
Standards Change Request
File Checksums SCR3-1034.v3
Elizabeth D. Rye March 6, 2006

Provenance:

Date: 2005-11-14, revision 2.0
Working Group: T. King (lead), M. McAuley
Title: MD5 Checksums (SCR3-1034.v2)

Date: 2004-11-22, revision 1.0
Working Group: J. Wilf (lead), T. King, M. McAuley
Title: MD5 Checksums for Files (SCR3-1034.v1)

Problem:

Provide a means for testing the integrity of PDS data.

As an entity responsible for maintaining data, it is critical that the PDS be able to
ascertain the integrity of its archive. This includes verifying the integrity of data stored
on various types of external physical media (all of which have finite life spans), detecting
errors introduced during transfer of data to newer media, and detecting errors that occur
during the transmission of data from data providers to the PDS, between PDS nodes,
from the PDS to the NSSDC, and from the PDS to end users.

Proposed Solution:

A simple method for detecting these types of errors is to create and maintain a catalog
of checksum values for every data product and file contained in PDS archives.

(Alternatively, checksums may be contained within data product labels, although this is
only practical for storing the checksums of products with detached labels and provides
no test for the integrity of the label files themselves. When used this way, the checksum
keyword should be positioned within the object description of the object it is calculated
for. Thus, in the case of a data product with a single detached label describing two data
objects in two separate files, the checksum for each file would be stored within each of
the explicit FILE objects.)

There are various types of checksums available that can be used for this purpose. The
PDS has traditionally supported a simple checksum consisting of a 32-bit integer sum of
all bytes in a data file. The one currently best suited to this purpose utilizes the 5th
generation Manifest Digest (MD5) algorithm, briefly described in an attachment to this
SCR. However, the proposals outlined in this SCR are not limited to any particular type
of checksum and should allow for the easy implementation of new and better checksum
algorithms as they become available.

The proposed changes outlined in this SCR are:

1. Update the element definition for the MD5_CHECKSUM keyword, correcting the
errors in the original entry.

2. Establish a reserved file, "CHECKSUM.TAB", which contains checksum values
for all files in an archive, to be optionally included in the INDEX directory of the
archive.

3. Create a new keyword, CHECKSUM_TYPE, for use in the CHECKSUM.LBL file,
to provide flexibility in permitting various types of checksums to be used.

Requested Changes:

Changes to the Standards Reference

The following changes to the PDS Standards Reference are required to support this
SCR:

Add to section 10.2.2 Reserved File Names, "CHECKSUM.TAB".

Add to Chapter 19.3.2.3 INDEX Subdirectory, after INDEX.TAB:

CHECKSUM.TAB Optional

This file contains a checksum for every file on the volume. The format is to be
standard PDS ASCII tabular format, with one column providing the file specification
name for each file in the archive, and another column providing the checksum.

CHECKSUM.LBL Optional

This is the PDS label for the CHECKSUM.TAB file. The column object for the
CHECKSUM column should contain the CHECKSUM_TYPE keyword, specifying
the type of checksum recorded in the CHECKSUM.TAB file.

For an example of the CHECKSUM.TAB and CHECKSUM.LBL files, see Appendix
D, section D.2. (Is this the correct place to put these?)

Each figure in Chapter 19. Volume Organization and Naming, will need to be updated
to include a “CHECKSUM.TAB” and a "CHECKSUM.LBL" file in the INDEX directory.

Appendix D, section D.2 (again, is this the correct place?) add the sample
CUMINDEX.TAB and CUMIDNEX.LBL files as shown in the attachment. (The following
sections of Appendix D will need to be re-numbered.)

Changes to the Data Dictionary

Modify the description of the MD5_CHECKSUM keyword as shown in the attached
element definition template.

Add the new keyword, CHECKSUM_TYPE, as shown in the attached element definition
template.

Changes to the PDS Tool Suite

There are no immediate changes necessary in any PDS tool. However, as soon as
practical, a simple PDS tool should be generated which incorporates existing published
software and algorithms to create the CHECKSUM.TAB and CHECKSUM.LBL files for
an archive (or archive volume). The same or an additional tool should be capable of
then validating the archive against the checksum files and producing an error report.

Impact Assessment:

In addition to the above described changes,

1. It remains to be determined if PDS computers and software are capable of
handling a 32 character hexadecimal number. If they are not, the approach of
dealing with MD5 checksums as a hexadecimal number rather than as a
character will need to be re-thought.

2. In the event that we utilize the appropriate hexadecimal number format for MD5
checksums, missions currently supplying a character value for the
MD5_CHECKSUM keyword will need to receive a waiver.

Additional Information:

An MD5 checksum [MD5] is calculated for a bit stream of any length. An MD5
checksum is a 128-bit number, represented as a 32-character string of hexadecimal
digits, e.g., 754b9db19f79dbc4992f7166eb0f37ce. The MD5 checksum specification
states:

It is conjectured that it is computationally infeasible to produce two messages
having the same message digest, or to produce any message having a given
pre-specified target message digest.

In other words, no two files will have the same MD5 checksum unless they are identical.
This has been demonstrated to be true in all but the most extreme circumstances.

While the MD5 algorithm is not recommended by the National Institute of Standards and
Technology (NIST) for secure transmissions (SHA-1 is preferred) the MD5 checksum is
faster to compute than the SHA-1 checksum and is well suited for integrity checking.

MD5 Support

The generation of MD5 checksums is widely supported. The algorithm with source
code written in C is available at [MD5]. MD5 checksum generation is also supported in
Java. The tool MD5deep [MD5-Deep] supports the recursive generation of MD5
checksums and the validation of files. The output of the MD5deep tool is one line per
file consisting of the MD5 checksum, white space and the file name (with path). An
example is:

$ md5deep -lr .
f8dd7758cb5231c9e7817c4710d00b6e ./aareadme.htm
d8b83365f5e117b9665181944889da3d ./aareadme.lbl
1e8d45f622e09b9e2998af1a6d67a296 ./aareadme.txt
7dcfa51691ddd149a5a091ebe87b9bb1 ./errata.txt
7f310bf58a37af7f9b16c4fe68a131fb ./voldesc.cat

[MD5] The document describing the MD5 algorithm can be found at:
http://www.faqs.org/rfcs/rfc1321.html

[MD5-DEEP] MD5deep resources: http://md5deep.sourceforge.net/

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = "2004-04-06, CN: BAM;
2004-10-14, PPI: S. Joy; 2006-03-06, EN: EDR"

OBJECT = ELEMENT_DEFINITION
 ELEMENT_NAME = "md5_checksum"
 BL_NAME = "md5checksum"
 DESCRIPTION = "

 The MD5 algorithm takes as input a file (message) of arbitrary length
 and produces as output a 128-bit 'fingerprint' or 'message digest' of
 the input. It is conjectured that it is computationally infeasible to
 produce two messages having the same message digest, or to produce
 any message having a given prespecified target message digest. The
 MD5 algorithm is intended for digital signature applications.

 The MD5 algorithm is designed to be quite fast on 32-bit machines. In
 addition, the MD5 algorithm does not require any large substitution
 tables; the algorithm can be coded quite compactly.

 Most standard MD5 checksum calculators represent the checksum as a 32
 character hexadecimal and it will be thus represented in PDS
 applications. Be aware that when feeding the checksum value to existing
 checksum calculators, it may be necessary to strip off the ODL hexadecimal
 mask from the value.

 Example: MD5_CHECKSUM = 16#0ff0a5dd0f3ea4e104b0eae98c87f36c#

 The MD5 algorithm is an extension of the MD4 message-digest algorithm
 1,2]. MD5 is slightly slower than MD4, but is more 'conservative' in
 design. MD5 was designed because it was felt that MD4 was perhaps
 being adopted for use more quickly than justified by the existing
 critical review; because MD4 was designed to be exceptionally fast,
 it is 'at the edge' in terms of risking successful cryptanalytic
 attack. MD5 backs off a bit, giving up a little in speed for a much
 greater likelihood of ultimate security. It incorporates some
 suggestions made by various reviewers, and contains additional
 optimizations. The MD5 algorithm has been placed in the public domain
 for review and possible adoption as a standard.

 For OSI-based applications, MD5's object identifier is

 md5 OBJECT IDENTIFIER ::=
 iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}

 In the X.509 type AlgorithmIdentifier [3], the parameters for MD5
 should have type NULL.

 The MD5 algorithm was described by its inventor, Ron Rivest of
 RSA Data Security, Inc., in an Internet Request For Comments
 document, RFC1321 (document available from the PDS).

 References
 ==========
 [1] Rivest, R., The MD4 Message Digest Algorithm, RFC 1320, MIT and
 RSA Data Security, Inc., April 1992.

 [2] Rivest, R., The MD4 message digest algorithm, in A.J. Menezes
 and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO '90
 Proceedings, pages 303-311, Springer-Verlag, 1991.

 [3] CCITT Recommendation X.509 (1988), The Directory -
 Authentication Framework."

 GENERAL_DATA_TYPE = "NON_DECIMAL"
 MAXIMUM = "16#FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF#"
 MINIMUM = "16#00000000000000000000000000000000#"
 MAXIMUM_LENGTH = "36"
 MINIMUM_LENGTH = "36"
 STANDARD_VALUE_TYPE = "RANGE"
 STANDARD_VALUE_SET_DESC = "N/A"
 KEYWORD_DEFAULT_VALUE = "N/A"
 UNIT_ID = "none"
 SOURCE_NAME = "PDS CN/R. SWORD"
 FORMATION_RULE_DESC = "N/A"
 SYSTEM_CLASSIFICATION_ID = "COMMON"
 GENERAL_CLASSIFICATION_TYPE = "N/A"
 CHANGE_DATE = "2006-03-06"
 STATUS_TYPE = "APPROVED"
 STANDARD_VALUE_OUTPUT_FLAG = "N"
 TEXT_FLAG = "N"
 TERSE_NAME = "md5checksum"
 SQL_FORMAT = "CHAR(36)"
 BL_SQL_FORMAT = "char(36)"
 DISPLAY_FORMAT = "JUSTLEFT"
 AVAILABLE_VALUE_TYPE = "N/A"
END_OBJECT = ELEMENT_DEFINITION
END

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = "2006-03-06, EN: EDR"

OBJECT = ELEMENT_DEFINITION
 ELEMENT_NAME = "checksum_type"
 BL_NAME = "checksumtype"
 DESCRIPTION = "

 The CHECKSUM_TYPE keyword is used to specify the type of checksum
 calculated for a file or data object. There are currently only two
 checksums approved for use in the PDS: "SIMPLE" and "MD5". For details on
 how each of these checksums is calculated, please see the element
 definitions for CHECKSUM and MD5_CHECKSUM, respectively."

 GENERAL_DATA_TYPE = "IDENTIFIER"
 MAXIMUM = "N/A"
 MINIMUM = "N/A"
 MAXIMUM_LENGTH = "12"
 MINIMUM_LENGTH = "1"
 STANDARD_VALUE_TYPE = "DYNAMIC"
 STANDARD_VALUE_SET = {"SIMPLE", "MD5"}
 STANDARD_VALUE_SET_DESC = "N/A"
 KEYWORD_DEFAULT_VALUE = "N/A"
 UNIT_ID = "N/A"
 SOURCE_NAME = "PDS EN/E. Rye"
 FORMATION_RULE_DESC = "N/A"
 SYSTEM_CLASSIFICATION_ID = "COMMON"
 GENERAL_CLASSIFICATION_TYPE = "N/A"
 CHANGE_DATE = "2006-03-06"
 STATUS_TYPE = "APPROVED"
 STANDARD_VALUE_OUTPUT_FLAG = "Y"
 TEXT_FLAG = "N"
 TERSE_NAME = "checksumtype"
 SQL_FORMAT = "CHAR(12)"
 BL_SQL_FORMAT = "char(12)"
 DISPLAY_FORMAT = "JUSTLEFT"
 AVAILABLE_VALUE_TYPE = "N/A"
END_OBJECT = ELEMENT_DEFINITION
END

D.2 CHECKSUM.TAB and CHECKSUM.LBL

Each PDS archive volume may optionally include a "CHECKSUM.TAB" file in the
INDEX subdirectory. (If included, this file must be accompanied by a
"CHECKSUM.LBL" file.) This file contains a checksum for every file contained on the
archive volume (or in the entire archive, if stored as a virtual volume online).

D.2.1 Example of CHECKSUM.TAB

"AAREADME.TXT ",16#F8DD775BCB5231C9E7B17C4710D00B6E#
"ERRATA.TXT ",16#7DCFA51691DDD149A5A091EBEB7B9BB1#
"BROWSE/MARS/C1246XXX/I862934L.IMG ",16#7F310BF58A37AF7F9B16C4FE68A131FB#
"BROWSE/MARS/C1246XXX/I862934R.IMG ",16#1E8D45F622E09B9E299BAF1A6D67A296#
.
.
.

D.2.1 Example of CHECKSUM.TAB

PDS_VERSION_ID = PDS3

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 77
FILE_RECORDS = 3623

DESCRIPTION = "CHECKSUM.TAB provides a checksum for all
 files included on this archive volume, with
 the exception of the checksum file itself."

^CHECKSUM_TABLE = "CHECKSUM.TAB"

OBJECT = CHECKSUM_TABLE
 INTERCHANGE_FORMAT = ASCII
 ROW_BYTES = 77
 ROWS = 3623
 COLUMNS = 2

 OBJECT = COLUMN
 NAME = FILE_SPECIFICATION_NAME
 DESCRIPTION = "Identifies the file for which the checksum
 was calculated."
 DATA_TYPE = CHARACTER
 START_BYTE = 2
 BYTES = 36
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = CHECKSUM
 DESCRIPTION = "The checksum of the indicated file."
 CHECKSUM_TYPE = MD5

 DATA_TYPE = ???
 START_BYTE = 40
 BYTES = 36
 END_OBJECT = COLUMN

END_OBJECT = CHECKSUM_TABLE
END

