
JPEG2000: Standard for Interactive Imaging

DAVID S. TAUBMAN AND MICHAEL W. MARCELLIN , FELLOW, IEEE

Contributed Paper

JPEG2000 is the latest image compression standard to emerge
from the Joint Photographic Experts Group (JPEG) working under
the auspices of the International Standards Organization. Although
the new standard does offer superior compression performance
to JPEG, JPEG2000 provides a whole new way of interacting
with compressed imagery in a scalable and interoperable fashion.
This paper provides a tutorial-style review of the new standard,
explaining the technology on which it is based and drawing com-
parisons with JPEG and other compression standards. The paper
also describes new work, exploiting the capabilities of JPEG2000
in client–server systems for efficient interactive browsing of images
over the internet.

Keywords—Coding, compression standards, image compres-
sion, interactive imaging, JPEG2000, remote image browsing,
scalability, wavelets.

I. INTRODUCTION

JPEG2000 [1]–[6] is the latest image compression
standard to emerge from the body popularly known as the
Joint Photographic Experts Group (JPEG). More formally,
this body is denoted ISO/IEC JTC1/SC29/WG1, which
stands for Working Group 1 of Study Committee 29 of
Joint Technical Committee 1 of ISO/IEC. Here, ISO is the
International Organization for Standardization, IEC is the
International Electrotechnical Commission, and the word
“Joint” refers to the fact that the standard is developed and
published jointly with the International Telecommunication
Union (ITU).

This new standard has been developed to meet the demand
for efficient, flexible, and interactive image representations.
JPEG2000 is much more than a compression algorithm,
opening up new paradigms for interacting with digital im-
agery. At the same time, the features offered by JPEG2000
derive from a single algorithm rather than a family of different
algorithms. In particular, an important goal of JPEG2000

Manuscript received December 7, 2001; revised April 18, 2002.
D. S. Taubman is with the School of Electrical Engineering and Telecom-

munications, The University of New South Wales, UNSW Sydney 2052,
Australia (e-mail: d.taubman@unsw.edu.au).

M. W. Marcellin is with the Department of Electrical and Computer
Engineering, The University of Arizona, Tucson, AZ 85721 USA (e-mail:
marcellin@ece.arizona.edu).

Publisher Item Identifier 10.1109/JPROC.2002.800725.

is that all implementations, from the simplest to the most
sophisticated, should be able to effectively interact with the
same, efficiently compressed image, regardless of the reso-
lution, bit depth, bit rate, or number of components in that
image. With few exceptions, this goal has been achieved.
This is a direct consequence of JPEG2000’s emphasis on
scalable compressed representations, as described below.

In addition to highly scalable compressed data streams,
JPEG2000 offers numerous advantages over its predecessor,
JPEG [7]–[9]. Among these are

• improved compression efficiency;
• progressive lossy to lossless performance within a

single data stream;
• the ability to resequence compressed data to suit a wide

range of different applications;
• the ability to arbitrarily crop images in the compressed

domain without compression noise buildup;
• the ability to enhance the quality associated with se-

lected spatial regions in selected “quality layers”;
• the ability to work with truly enormous images without

breaking them into independently compressed “tiles.”

Section VI of this paper is devoted to a more careful com-
parison of JPEG with JPEG2000. We also take the opportu-
nity to point out key differences between the two standards
at various other junctures in the technical discussion which
follows.

A. Scalability

As already suggested, a central concept in JPEG2000 is
that of scalability. In the image compression literature, scal-
ability means much more than the ability to compress im-
ages with a variety of different sizes at a variety of different
bit rates. Instead, scalability is a property of the compressed
data stream itself. A compressed data stream is said to be
scalable if it consists of an embedded collection of smaller
streams, each representing an efficient compression of the
original image or some portion thereof.

More specifically, a compressed representation is said to
be “resolution scalable” if it contains identifiable subsets
which represent successively lower resolution versions of the
source image; it is “distortion scalable” (or SNR scalable)

0018-9219/02$17.00 © 2002 IEEE

1336 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 1. One- and two-dimensional embedded compressed data streams with dimensions of
resolution (image size) and distortion (image quality).

if it contains identifiable subsets which represent the image
at full resolution but with successively lower quality (more
distortion). A compressed data stream which possesses both
forms of scalability contains subsets which represent the
image at any of a number of different resolutions, each
at any of a number of different qualities. The embedded
components of a resolution and distortion scalable data
stream are illustrated stylistically in Fig. 1.

The value of scalability may be summarized as the
ability to compress once but decompress in many ways.
At the point of compression, there is no need to know the
resolution and quality which will be required by a consumer.
The complete data stream, as well as each of its subsets,
represents the image as efficiently as could be expected if
we had known the consumer’s requirements at the point
of compression. In addition to resolution and distortion,
JPEG2000 compressed images offer spatial accessibility
and component accessibility. Starting with a single com-
pressed data stream, it is possible to extract a subset (itself a
valid JPEG2000 compressed data stream) which represents
a selected spatial region of interest within one or more
selected image components1 at a selected resolution and
with a selected quality. We may think of the spatial region,
the image components, the resolution, and the distortion as
constituting four “dimensions” of scalability. Fig. 1 shows
only two of these four dimensions.

Scalable representations have obvious benefits for applica-
tions where the image must be distributed to multiple clients
with different display resolutions, regions of interest, or com-
munication capacities. Alternatively, a single client may ac-
cess the compressed image interactively, where the spatial re-
gion, resolution, and image quality may change dynamically
with the user’s interest or the properties of the communica-
tion channel. Such applications are discussed in Section V of
this paper.

1Individual color channels, such as luminance (Y) and chrominance (Cb
and Cr), are compressed as separate image components. Image components
may also play more exotic roles as layers (text, graphics, etc.) in a compound
document or as slices in MRI or CT data sets.

Scalable representations also provide elegant solutions to
a number of problems which regularly arise in the deploy-
ment of media compression algorithms. If the compressed
file must conform to a given length constraint, a single
compressed data stream can simply be truncated to the
desired size, achieving comparable compression efficiency
to the more traditional approach of repeatedly modifying
quantization parameters until the desired size is achieved.

Scalability largely obviates the need to impose limits on
the image dimensions, compressed bit rate, and number of
colors. The reader may be familiar with the use of such limits
in the MPEG family of standards where they serve to bound
the complexity of compliant decoders. In JPEG2000, how-
ever, the decoder is free to decompress a reduced size image,
possibly at reduced quality, in accordance with its adver-
tised capabilities. This in turn means that content providers
are free to include as much information as they wish in a
single compressed data stream. Only a fraction of this infor-
mation might be exploited by any given application, but con-
tent providers need not make prejudicial assumptions con-
cerning the information which a potentially unknown appli-
cation might be able to exploit.

B. Technology Overview

Scalability in JPEG2000 is based on the discrete wavelet
transform (DWT) and embedded block coding with opti-
mized truncation (EBCOT). It is appropriate at this point to
provide a cursory introduction to these concepts. A more
detailed exposition follows in Sections II and III. The reader
may find Figs. 2–4 helpful in understanding the discussion
which follows.

If multiple image components are present, they may
optionally be subjected to a decorrelating “color” transform.
JPEG2000 Part 1 describes two such transforms, one of
which is the conventional RGB to YCbCr transform: the
Y component represents image luminance and may be
independently decompressed to recover a suitable gray-scale
rendition of the image; Cb and Cr represent blue and red

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1337

Fig. 2. DWT analysis and synthesis, showing three levels of decomposition. The dimensions of the
image (LL) are halved between successive stages in the transform,d.

Fig. 3. Partition of image subbands into code-blocks, each with its own embedded bit-stream.
Original image source belongs to the standard color image data (SCID) described in ISO 12640, 1995.

Fig. 4. Quality layer abstraction in JPEG2000.

1338 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

color difference components, respectively. While the YCbCr
transform is invertible, it is not amenable to efficient lossless
compression. A second decorrelating transform known as
the reversible color transform (RCT) [10] is defined by
JPEG2000 Part 1 for applications requiring lossless com-
pression. It has similar properties to the YCbCr transform,
but produces integer-valued luminance and chrominance
components with similar dynamic range to the original
image samples. These two decorrelating transforms may be
applied to the first three components of any image, regard-
less of whether or not the components have an interpretation
in terms of color. In any event, the output components are
compressed independently.

For the sake of simplicity, we henceforth restrict our dis-
cussion to the compression of a single image component,
using the term “image” to refer to that component. We also
temporarily ignore the fact that images may be further subdi-
vided into tiles prior to compression, a matter which we take
up again in Section IV-A. As shown in Fig. 2, the image is
first decomposed (DWT analysis) into a collection of sub-
sampled spatial frequency bands known as subbands. The
subbands belong to a multiresolution hierarchy, from which
each successively higher resolution version of the image may
be reconstructed by composing the immediate lower resolu-
tion version (denoted LL) with three spatial detail subbands
(denoted LH, HL and HH). The composition operator is
identified as “DWT synthesis,” and the image dimensions
double between successive synthesis stages.

The samples describing each subband are partitioned into
rectangular blocks, known as “code-blocks,” each of which
is independently coded into a finely embedded bitstream, as
suggested by Fig. 3. Truncating the embedded bitstream as-
sociated with any given code-block has the effect of quan-
tizing the samples in that block more coarsely. Byfinely
embedded, we mean that each block’s bitstream offers nu-
merous useful truncation points, with rate-distortion charac-
teristics comparable to those which could be obtained by ad-
justing the quantization parameters associated with an effi-
cient nonembedded coding scheme. Each block of each sub-
band in each image component may be independently trun-
cated to any desired length after the coding is complete.

Resolution scalability in JPEG2000 is a direct conse-
quence of the multiresolution properties of the DWT. By
dropping the code-blocks corresponding to the highest reso-
lution detail subbands and omitting the final stage of DWT
synthesis, a half resolution image is reconstructed from the
remaining subbands. Dropping the next lower resolution
subbands leaves a quarter resolution image, and so forth.

Even though each individual code-block has its own
embedded bitstream, this is not sufficient to ensure that
the overall compressed representation is distortion scal-
able. To obtain an efficient compressed representation at
a lower overall bit rate, it is necessary to know how each
code-block’s bitstream should be truncated in relation to
the others. JPEG2000 provides this information through a
“quality layer” abstraction. As illustrated in Fig. 4, each
quality layer represents an incremental contribution (pos-
sibly empty) from the embedded bitstream associated with
each code-block in the image. The sizes of these incremental

layer contributions are determined (optimized) during
compression in a manner which ensures that any leading
set of quality layers corresponds to an efficient compressed
representation of the original image.

Distortion scalability is realized by discarding one or more
final quality layers. It is also possible, although somewhat
suboptimal, to discard partial layers. If the compressed data
stream is organized in layer progressive fashion,2 all of the
code-block contributions to layer 1 appear first, followed by
the contributions to layer 2, and so forth. Such streams may
be truncated at any point and meaningfully reconstructed to
yield a decompressed image whose quality is similar to that
which could be achieved from a nonprogressive stream of
the same size. It is important to note that the JPEG2000 stan-
dard imposes no practical restriction on the way in which a
compressor may assign code-block contributions to quality
layers. If a particular region of the image or particular fre-
quency bands are known to be more important than others,
the relevant code-blocks may be assigned higher priority,
making larger contributions to the initial quality layers. In
this way, a decompressor which receives only the first few
quality layers will reconstruct the most important portions of
the image with higher fidelity. The quality layer abstraction
thus allows distortion scalability to be applied to domain-spe-
cific measures of distortion (or importance).

Spatial accessibility in JPEG2000 arises from the fact that
each code-block is associated with a limited spatial region
and is coded independently. Typical code-block dimensions
are 32 32 or 64 64 subband samples. The size of the
reconstructed image region which is affected by any given
code-block depends upon the particular subband to which it
belongs. Also, adjacent code-blocks from any given subband
have overlapping regions of influence in the reconstructed
image. This is because wavelet synthesis is a spatially expan-
sive operation. This property tends to blur the boundaries be-
tween code-blocks in the reconstructed image, avoiding the
appearance of hard boundary artifacts when individual block
bitstreams are aggressively truncated.

II. M ULTIRESOLUTION TRANSFORMS

Multiresolution transforms are the key to resolution
scalable compression. Such transforms are typically based
around either a Laplacian pyramid structure or a tree-struc-
tured subband structure, also called a discrete wavelet
transform. The former is used by JPEG in its “hierarchical
refinement” mode, while the latter is foundational to
JPEG2000.

A. Laplacian Pyramids

Fig. 5 illustrates the Laplacian pyramid paradigm for reso-
lution-scalable image compression. A resolution “reduction”
operator is used to construct a family of successively lower
resolution images, each having half the width and height of
its predecessor. The lowest resolution image, at the base of
the pyramid, is passed through a (usually lossy) compression

2JPEG2000 supports a rich family of information progression orders,
some of which are discussed further in Section IV-B.

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1339

Fig. 5. Multiresolution compression using the Laplacian pyramid structure.

algorithm. After decompression, a resolution “expansion”
operator is used to form a “predictor” for the next higher
resolution image. The prediction residual, or “detail image,”
is again spatially compressed. After decompression and ad-
dition of the predictor, the second lowest resolution in the
pyramid is recovered (with some distortion).

In this way, the entire multiresolution family is represented
by the base image, together with a sequence of detailed im-
ages. JPEG’s “hierarchical refinement” mode operates in ex-
actly this way, with the base image and each detail image
compressed using the baseline JPEG algorithm. Evidently,
a reduced resolution may be obtained simply by discarding
one or more of the detail images from the compressed data
stream.

Perhaps the most significant drawback of the Laplacian
pyramid is its redundancy. The largest detail image has as
many samples as the original image. The next detail image
has as many samples as the original image, and so forth.
In this way, the total number of samples which must be com-
pressed is larger than the original number of image samples
by a factor of . This redun-
dancy works against efficient compression.

A second drawback of the multiresolution structure
shown in Fig. 5 is that the compressor and decompressor
are expected to form exactly the same predictors from the
decompressed base and detail image components. This poses
a problem if resolution and distortion scalability are both
required, since the amount of distortion in the base and detail
image components of a distortion scalable representation
depends upon the portion of the data stream which is actually
decompressed—something the compressor cannot knowa
priori . Although it is possible to relax the requirement that
the compressor and decompressor form identical predictors,
this leads to further reduction in compression efficiency.

B. Subband Transforms

JPEG uses the discrete cosine transform (DCT) to exploit
spatial redundancy, adding hierarchical refinement as an op-
tional mode. By contrast, the DWT at the heart of JPEG2000
serves both to exploit spatial redundancy and to impart reso-
lution scalability.

The DWT belongs to the more general class of tree-struc-
tured subband transforms, which are constructed from the
one-dimensional (1-D) building block illustrated in Fig. 6.
An input sequence is passed through low- and high-pass
analysis filters, with impulse responses and ,
respectively. The filtered outputs and are each
subsampled by a factor of 2, yielding low- and high-pass
subband sequences. In particular, the low-pass subband is
formed by retaining even indexed samples, ,
while the high-pass subband is formed by retaining odd
indexed samples, .3

We say that the subbands are “critically sampled” since the
combined sample rate of the low- and high-pass subbands is
identical to that of the original input sequence . As sug-
gested by Fig. 6, it is possible to recover the input sequence
from its subbands. Upsampled sequences and
are formed by inserting zeros into the odd (even) locations
which were discarded by the subsampling operators. Low-
and high-pass synthesis filters and are applied to
the upsampled sequences, and the results are summed.

1) Finite Support Filters: The fact that it is possible to
perfectly reconstruct from its subbands is not particu-
larly surprising. What is surprising, however, is that it is pos-

3We note that subband transforms are more commonly described in terms
of subsampling operators which retain only the even indexed samples. The
use of two different subsampling operators, one for each type of subband,
is more convenient for our purposes, leading to simpler descriptions of the
filter properties.

1340 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 6. One-dimensional, two-channel subband transform.

sible to find filters , , , and all with finite support,
such that this “perfect reconstruction” property holds. When
the filters all have finite support, it can be shown that the
analysis and synthesis filters must be related through

and

(1)

That is, the low-pass synthesis filter is obtained by modu-
lating the high-pass analysis filter and the high-pass synthesis
filter is obtained by modulating the low-pass analysis filter.
The factor serves to compensate for the gains of the anal-
ysis filters, whose selection is implementation dependent.

In JPEG2000 Part 1, the filter impulse responses have odd
lengths and are symmetric about the origin.4 That is,

. Symmetric (or linear phase) filters are
used almost exclusively in image processing due to their edge
preservation properties [11, Sec. 4.1]. Filters with nonlinear
phase characteristics introduce visually disturbing distortion
at image edges, which would have an adverse impact on the
quality of the reduced resolution images produced by the
final multiresolution transform.

It can be shown that odd-length symmetric filters satis-
fying the perfect reconstruction property must have lengths
which differ by an odd multiple of 2 [12], [2]. Part 1 of the
JPEG2000 standard [1] prescribes two different sets of fil-
ters, each having lengths which differ by the minimum of
two samples. The 5/3 transform has low- and high-pass anal-
ysis filters with lengths 5 and 3; the filter coefficients are

if
if
if

if
if

(2)

The 9/7 transform has analysis filters

if
if
if
if
if

if
if
if
if

(3)

4The fact that both filters are symmetric aboutn = 0 is a consequence
of the simplifying yet less common subsampling convention adopted in this
paper.

As described here, the low-pass filters each have a dc gain
of and a Nyquist gain of , while the
high-pass filters each have a dc gain of and a
Nyquist gain of . Under these conditions,5 the
synthesis filters are found by setting in (1).

While Fig. 6 clarifies the role of subband transforms in
decomposing a signal into its low- and high-frequency com-
ponents, the equivalent representation in Fig. 7 provides in-
sight into the distinction between subband transforms and
block transforms, such as the block DCT used by JPEG. The
low-pass subband samples may be associated with the even
indexed locations in an interleaved sequence,, while the
high-pass samples may be associated with the odd indexed
locations in . Subband analysis and synthesis may then
be expressed as time-varying convolution operators, map-
ping to and vice versa, according to

and

Fig. 7 illustrates these operations for the specific case of
the 5/3 transform. Each subband sample is obtained
as a weighted average of the input samples , where
the weights are the samples of the time reversed impulse
response, , shifted to location . These time-re-
versed and shifted impulse responses are the transform’s
“analysis functions.” As seen in the figure, the analysis
functions overlap with one another. By contrast, block trans-
forms such as the DCT break the input signal into blocks,
analyzing the samples in each block without reference to
other blocks.

During synthesis, the signal is reconstructed by summing
a collection of overlapping contributions, one from each
subband sample. The contribution due to subband sample

is obtained by shifting the synthesis impulse response
to location and scaling it by . These shifted

impulse responses are the transform’s “synthesis functions”
and their overlapping regions of support are evident from
Fig. 7. By contrast, block transforms such as the DCT
reconstruct the signal in independent blocks.

This distinction between overlapping and independent
block transforms plays a major role in shaping the appear-
ance of the compression artifacts which appear in lossy

5The JPEG2000 standard [1] adopts the slightly different normalization
of ĥ (0) = 1 andĥ (�) = 2 in describing these two transforms, although
that convention is slightly less convenient for fixed point implementations.

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1341

Fig. 7. Overlapping analysis and synthesis operators associated with a 1-D two-channel subband
transform.

Fig. 8. Separable 2-D subband analysis. Synthesis is similar.

reconstructed images. At high compression ratios, block
boundary artifacts dominate the appearance of JPEG com-
pressed imagery, while the artifacts in JPEG2000 images
are more distributed. Fig. 23 provides an illustration of this
behavior. As we shall see in Section V, the overlapping
synthesis functions also play an important role in shaping
the subjective experience associated an interactive image
retrieval application.

2) Image Transforms:Image transforms are almost in-
variably constructed by separable application of a 1-D trans-
form in the vertical and horizontal directions. In the case of
JPEG2000, the 1-D transform illustrated in Figs. 6 and 7 is
applied first to each column of the image, producing ver-
tically low- and high-pass subband images. The same 1-D
transform is then applied to each row of the vertical subband
images, decomposing each of them into horizontally low-
and high-pass subbands. These operations are illustrated in
Fig. 8. JPEG2000 Part 1 employs the well-known strategy
of symmetric extension [13], [14], [2] at image boundaries
to ensure that the total number of subband samples required
to represent the image is the same as the original number of
image samples.

The four subbands are denoted LL, HL (horizontally
high pass), LH (vertically high pass), and HH. Each sub-
band has half as many rows and half as many columns as
the original image so that the total number of samples in the
subbands is identical to the number of samples in the image.
As shown in Fig. 3, the HL subband contains information
about vertically oriented image features, since these change
most rapidly in the horizontal direction. Similarly, the LH

subband contains information about the horizontally oriented
features and HHresponds most strongly to diagonally ori-
ented image features. The LLsubband is a good low-resolu-
tion version of the image, since acts as an antialiasing
filter, applied in both directions prior to subsampling.

Applying this same separable subband transform to the
LL subband yields further subbands LL, HL , LH , and
HH , each having one quarter the number of rows and
columns as the original image. Continuing in this way,
we obtain a tree-structured decomposition of the form
illustrated in Fig. 2. A tree with transform stages yields

subbands and offers image resolutions. The
lowest resolution is obtained by discarding all but the LL
subband at the base of the tree. The next resolution, LL,
is obtained by separable synthesis of the LL, HL , LH ,
and HH subbands. In general, subbands LL, HL
through HL , LH through LH , and HH through
HH are sufficient to synthesize the image to resolution
LL , where LL denotes the original, full-resolution image.

In JPEG2000, each subband is coded independently. As
a result, subsets of the compressed bitstream corresponding
to each of the available resolutions may be obtained
simply by discarding the unnecessary subbands. Unlike the
Laplacian pyramid of Fig. 5, there is no redundancy in this
multiresolution transform. The number of subband samples
which must be quantized and coded is identical to the number
of samples in the original image.

3) Wavelet Perspective:The terms wavelet transform
and subband transform are often used interchangeably.
More specifically, a DWT is generally understood to be a
tree-structured subband transform with the structure shown
in Fig. 2. There is, however, a subtle yet important distinc-
tion between wavelet and subband transforms. Subband
transforms were first proposed in the mid-1970s for the
coding of speech signals by Croisieret al. [15], [16]. Early
work [17]–[21] focused on the properties of the analysis
and synthesis filters and the conditions required for perfect
reconstruction. Although tree-structured decompositions
were of substantial interest, the basic building block of
Fig. 6 was studied and optimized in isolation.

By contrast, wavelet transforms are concerned with the
properties of the iterated transform. Since the transform is

1342 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 9. Synthesis scaling and wavelet functions associated with the 5/3 and 9/7 subband filter sets.

linear, any given sample in any given subband from the tree
makes an additive contribution to the reconstructed image.
This contribution is of the form , where

is the level in the tree, identify the partic-
ular subband at that level, and is the

subband sample value itself. The synthesis function
satisfies

where may be derived directly from the basic syn-
thesis filters and by a process of iterative convo-
lution and upsampling.

A wavelet transform is one in which and
converge (as) to rate samplings of a pair of
bounded continuous functions and , known as
the scaling function and wavelet function, respectively. The
properties of the tree-structured transform are ultimately
governed by these functions. The wavelet perspective,
pioneered by Daubechies [22], [23] and Mallat [24], pro-
vides substantial intuition concerning the interpretation of
multiresolution subband transforms as well as guidance
concerning the selection of good filters for tree-structured
transforms. Fig. 9 shows the wavelet and scaling functions
associated with the 5/3 and 9/7 transforms defined by
JPEG2000 Part 1. The interested reader is referred to [25]
for a thorough development of these two filter sets. We
note that the 5/3 transform was first proposed for image
compression by Le Gall and Tabatai [26].

C. Lifting and Reversibility

In this section, we briefly introduce lifting realizations
of the wavelet transform [27]. Lifting plays a central role
in JPEG2000 where it enables efficient lossy and lossless
compression to be achieved within a common framework

[28], even within a single compressed data stream. The lifting
framework also provides a vehicle for exploiting inherent
structure in the analysis and synthesis filters to achieve com-
putational and memory savings.

Consider again the basic 1-D two-channel subband trans-
form of Fig. 6. A trivially invertible transform may be ob-
tained by setting all filters to the identity operator. In this
case, the subbands and are simply the even and
odd subsequences of . This entirely useless transform is
sometimes known as the “lazy wavelet.” Starting from the
lazy wavelet, more interesting transforms may be constructed
through a sequence of so-called “lifting” steps, as illustrated
in Fig. 10. The th step converts an initial set of subbands

and into a new set of subbands
and . The invertibility of each step is ensured by in-
sisting that only one of the two subbands be up-
dated in step and that the update consist in the addition of
a filtered version of the other subband . In the ex-
ample of Fig. 10, so that the steps
update the high-pass subbands, while steps up-
date the low-pass subbands. Specifically, we have

(forward step)

(inverse step)

Subband synthesis may thus be effected simply by reversing
the order of the lifting steps and the signs of the update terms,
as shown in Fig. 11.

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1343

Fig. 10. Lifting steps for subband analysis.

Fig. 11. Lifting steps for subband synthesis.

Fig. 12. Lifting analysis state machine for odd-length symmetric filters with lengths2L+ 1 and
2L� 1, shown here withL = 4 lifting steps.

It turns out that any two-channel subband transform with
finite support filters can be implemented through some se-
quence of lifting steps. The lifting steps have a particularly
simple form when the subband filters are symmetric, with
lengths and , as is the case for the 5/3 and
9/7 filters defined by JPEG2000 Part 1. In this case, exactly

steps are required, each of which involves a two-tap filter
with identical coefficients, [2, Sec. 6.4.4]. The specific
structure is illustrated in Fig. 12. For the 5/3 transform, there
are lifting steps with and . For
the 9/7 filter set, there are lifting steps with

Substituting the above coefficients, the reader may verify
(by direct expansion) that the structure of Fig. 12 implements
scaled versions of the 5/3 subband analysis filters of (2) or
the 9/7 analysis filters of (3), as appropriate. Fig. 12 actually
depicts a state machine, havingstate variables. To produce
each pair of subband samples, two new input samples must
be pushed into the machine (from the left), andadditions

and multiplications must be performed. In the case of the
5/3 transform, the multiplication factors are trivial powers of
2. Even the 9/7 transform requires only two multiplications
per sample. When the 1-D transform is applied separably to
images, these meager complexity figures double.

If the application supplies image samples in a line-by-line
fashion, the vertical transform may be implemented with as
little as line buffers, while the horizontal transform re-
quires memory for only samples. In the case of a full

-level DWT, we note that each successive stage operates
on images whose width and height are reduced by a factor of
2 from the previous stage. Accounting for the need to buffer
pairs of image lines between DWT stages, the total number
of samples which must be buffered to implement alevel
DWT is

, where is the full width of the image. Similar
considerations apply for DWT synthesis. For a much more
thorough analysis of the computational and memory require-
ments of the DWT, the reader is referred to [2].

Perhaps the most important property of the lifting struc-
ture is that the lifting filters may be modified in any de-
sired manner without compromising invertibility. This prop-

1344 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 13. Three embedded deadzone quantizers, each having a deadzone (or “fat zero”) which is
twice as large as the other quantization bins.

erty is exploited in JPEG2000 to provide efficient lossless
and lossy compression from the same algorithm. Specifi-
cally, JPEG2000 defines “reversible” transforms in which the
output of each lifting filter is rounded to an integer [28], [29].
In JPEG2000 Part 1, this rounding is available only in con-
junction with the 5/3 transform, whose modified lifting steps
are as follows:

Here is the floor function, rounding down to the nearest
integer. In this way, integer-valued image samples are trans-
formed to integer-valued subband samples, all of which have
a similar precision to that of the original image samples.

The term “reversible” is used to distinguish this type
of transform from most conventional image transforms,
from which the image cannot be exactly recovered using
finite numerical precision. For example, the DCT used by
JPEG has irrational coefficients, meaning that the transform
samples cannot be represented exactly using any finite
number of bits. Such a transform is clearly inappropriate for
lossless compression. By contrast, JPEG2000 offers both
state-of-the-art lossy compression and near state-of-the-art
lossless compression with a single algorithm. In conjunction
with the embedded quantization and coding strategies
described next, JPEG2000 is able to produce an efficient
losslessly compressed representation of the image, which
embeds any number of efficient lossy compressed represen-
tations.

III. EMBEDDED BLOCK CODING

Just as multiresolution transforms are the key to resolution
scalability, embedded quantization and coding are funda-
mental to distortion scalability. As mentioned in Section I-B
(see Fig. 3), DWT subbands are partitioned into smaller
“code-blocks,” each of which is coded independently;
typical code-block dimensions in JPEG2000 are 3232 or
64 64. Associated with each blockis a finely embedded
bitstream, which may be truncated to any of a large number
of different lengths .

Most significantly, the majority of the available truncation
points correspond to efficient compressed representations of
the block’s samples, in the rate-distortion sense. Specifically,
the mean squared quantization error (distortion) incurred
when reconstructing the samples from a length prefix
of the full bitstream is comparable to that which could be
obtained from a good nonembedded algorithm producing
a bitstream with the same length . The difference is
that nonembedded coders produce bitstreams which cannot
be truncated; quantization parameters must be adjusted at
encode time, until the desired code length is achieved. The
rich scalability offered by JPEG2000 is a direct consequence
of embedded block coding, which allows the distortion
associated with each individual code-block in each spatial
frequency subband to be adjusted simply by truncating the
block’s bitstream.

In this section, we provide a brief overview of the em-
bedded block coding algorithm used in JPEG2000. Since
prefixes of an embedded bitstream must correspond to suc-
cessively finer quantizations of the block’s sample values,
embedded coders are necessarily associated with a family of
quantizers. In fact, these quantizers are inevitably embedded
[30, Sec. 4B], in the sense that the quantization bins of a
finer quantizer must be completely contained within those
of a coarser quantizer.

JPEG2000 uses scalar “deadzone” quantizers having the
structure depicted in Fig. 13. The central quantization bin,
corresponding to those sample values which get quantized
to 0, is known as the “deadzone.” By making the deadzone
twice as large as the nonzero quantization bins, a family of
embedded quantizers arises when the step sizeis halved
between successive members of the family. The enlarged
deadzone, sometimes called a “fat zero,” is also helpful
when coding high-frequency subband samples, which tend
to be close to zero except in the neighborhood of appropri-
ately oriented image edges and other important features.
The numerous zero-valued quantization indices produced by
samples falling within the deadzone can be efficiently coded
using the adaptive arithmetic coding tools described shortly.

A. Bit-Plane Coding

The embedded quantization structure of Fig. 13 may be
conveniently associated with the bit planes in a sign-mag-
nitude representation of the subband samples. Let

denote the 2-D sequence of subband samples as-
sociated with code-blockand let denote the quanti-

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1345

Fig. 14. Bit-plane coding procedure, shown forK = 6 magnitude bit planes. The MSBs
correspond to magnitude bit-plane 5, while LSBs correspond to magnitude bit-plane 0. Black and
white boxes correspond to values of “1” and “0,” respectively.

zation indices (the bin labels) associated with the finest dead-
zone quantizer for this block, having step size. Then

sign

where denotes the floor function, roundingdown to
the nearest integer. Letting denote the indices of the
coarser quantizer with step size , we find that

Thus, the coarser quantization indices are obtained
simply by discarding the least significantbits from the bi-
nary representation of the finer quantization indices’ magni-
tudes, .

Based on this observation, an embedded bitstream may
be formed in the manner suggested by Fig. 14. Assuming
a -bit magnitude representation, the coarsest quantization
indices, , are represented by the most significant
magnitude bit of each sample, together with the signs of
those samples whose magnitudes are not quantized to zero.
A bit-plane coder walks through each of the samples, coding
these bits. If the bitstream is truncated at this point, the de-
coder receives the coarsest quantization indices, .
The bit-plane coder then moves to the next magnitude bit
plane, coding the sign of any samples whose magnitudes first
become nonzero in this bit plane. If the bitstream is truncated
after this point, the decoder receives the finer quantization in-
dices , and so forth.

By exploiting the substantial redundancy which exists
between successive bit planes, the embedded bitstream can
have the same coding efficiency as a nonembedded bitstream
in which each sample is coded completely before moving
to the next sample. JPEG2000’s bit-plane coder employs an
adaptive arithmetic coding strategy known as the MQ coder,
with 18 different adaptive probability models. The coder
switches between these 18 models on the basis of previously

coded bits from the same and previous bit planes in the
same code-block. The relevant model adaptively estimates
a probability distribution for the next bit to be coded and
the arithmetic coder assigns a representation whose length
closely matches the amount of information associated with
the value of the bit, assessed in relation to the probability
estimate. If the probability model predicts that the next mag-
nitude bit should be zero with high probability and the value
of the bit actually is zero (this happens very frequently),
the code length increases by only a small fraction of a bit.
For more information on bit-plane coding in JPEG2000, the
reader is referred to [31] and [2]. For a tutorial treatment of
arithmetic coding in general, the reader is also referred to
[32].

B. Fractional Bit Planes

In the bit-plane coding procedure described above, the
only natural truncation points for the embedded bitstream
are the bit-plane end-points. These correspond todif-
ferent quantizations of the original code-block samples,
whose quantization step sizes are related by powers of 2.
JPEG2000’s embedded block coding algorithm produces
a much more finely embedded bitstream, with many more
useful truncation points. This is achieved by coding the
information in each new bit plane in a sequence of three
“fractional bit-plane” coding passes. The first pass codes
the next magnitude bit and any necessary sign bit, only for
those samples which are likely to yield the largest reduction
in distortion relative to their coding cost. Conversely, the
last of the three coding passes in each bit plane processes
those samples which are expected to be least effective in
reducing distortion, relative to their cost in increased bit
rate. Together, the three coding passes code exactly one new
magnitude bit for every sample in the code-block.

Fig. 15 provides an illustration of these ideas, identifying
the effect of different truncation lengths on the expected dis-
tortion in the reconstructed subband samples. As suggested
by the figure, the operational distortion-length characteristic
of a fractional bit-plane coder generally lies below (lower
distortion) that of a regular bit-plane coder, except at the
bit-plane end-points.

1346 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 15. Effect of fractional bit planes on the operational distortion-length characteristic of an
embedded bitstream subject to truncation. Solid dots show the bit-plane end-points, while hatched
dots correspond to the end-points of the fractional bit-plane coding passes.

In JPEG2000, the identity of the samples to be included in
any given coding pass is assessed dynamically on the basis of
the information which has already been coded. In particular,
the samples in the first coding pass of any given bit plane are
those which are currently zero (all coded magnitude bits so
far have been zero), but have at least one nonzero neighbor.
These tend to have the highest likelihood of “jumping out” of
the deadzone in the next bit plane, yielding substantial reduc-
tions in distortion. Fractional bit-plane coding in JPEG2000
is the culmination of several research efforts [33]–[36]. We
also note that similar principles lie at the heart of the well-
known Set Partitioning in Hierarchical Trees (SPIHT) algo-
rithm [37], while a more elaborate strategy was proposed in
[38].

C. Quality Layers

JPEG2000 compressed images may contain a very large
number of code-blocks, each with a large number of
potential truncation points. To manage this complexity,
JPEG2000 introduces the concept of “quality layers.” Con-
ceptually, each quality layer represents an increment in
image quality. Unlike the embedded block coder, which
is confined to process subband samples in a well-defined
fashion which can be replicated by the decoder, quality
layers may contain arbitrary (possible empty) incremental
contributions from each of the code-blocks in the image,
as illustrated in Fig. 4. The actual contribution made by
each code-block to each layer is explicitly identified in the
compressed data stream; in fact, this information is itself
coded in a manner which exploits the redundancy between
neighboring code-blocks.

Quality layers open the door for application developers
to introduce novel or domain-specific interpretations of
image quality. For example, medical images often contain
local regions whose diagnostic value is much higher than
others. The initial layers of a well-constructed JPEG2000
data stream should include much larger contributions from
the code-blocks involved in reconstructing these sensitive
regions. If the reversible transform described in Section II-C

is employed, these important regions might even be recon-
structed losslessly from relatively few quality layers, while
distortion in the rest of the image might not dissipate until
many more layers have been delivered to the decoder.

IV. SPATIAL PARTITIONS IN JPEG2000

One of the goals of JPEG2000 is to meet the emerging
need for compression of and interaction with very large im-
ages. Uncompressed images from consumer digital cameras
are already crossing the 10-MB barrier, while scanned doc-
uments and geospatial images can run to many gigabytes a
piece. JPEG2000 provides two mechanisms for breaking the
information in such large images into smaller spatial regions,
which can be accessed on demand.

A. Tiles

JPEG2000 permits an image to be broken down into
smaller subimages known as tiles, each of which is inde-
pendently compressed. Each image component6 of each
tile (we call these “tile-components”) has its own DWT, its
own set of code-block bitstreams, and its own set of quality
layers. Parameters controlling the number of DWT levels,
quantization step sizes, the DWT kernels, and reversibility
may all be adjusted on a tile-component basis by including
appropriate markers in the code-stream. In fact, individual
tiles or tile-components may be readily extracted and
rewritten as valid JPEG2000 code-streams in their own
right. Here and elsewhere, the term “code-stream” is used to
identify the compressed data bits together with the marker
codes and associated data segments which are used to signal
coding parameters.

Although tiles are compressed entirely independently,
there is value to including the tiles within a single JPEG2000
code-stream. All or most of the tiles will usually have a
shared set of coding parameters. The tile dimensions are

6Recall that image components typically refer to the luminance and
chrominance channels of a color image, but may play other roles in some
applications.

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1347

Fig. 16. Precinct partition on resolution LL, showing the induced partition on subbands HL,
LH , and HH with their respective code-blocks.

deduced implicitly from those of the image and a set of
four tiling configuration parameters. The tile partition is
constructed in a manner which ensures that resolution
scalability is properly preserved over the entire image, even
if tiles have odd sizes or image components have odd sub-
sampling factors. Most significantly, compressed data from
the various tiles can be interleaved within the code-stream,
allowing organizations in which image quality or resolution
progressively improve over the entire image, as more of the
code-stream is recovered. This is facilitated by the use of a
common set of quality layers across all tiles with a common
interpretation of image quality, although content providers
are free to use quality layers in other ways.

Unfortunately, independent compression of each tile leads
to boundary artifacts in images decompressed at lower bit
rates. This is exactly the same phenomenon experienced
with the JPEG algorithm, which applies a DCT transform
independently to 8 8 image blocks. Typical tile sizes for
JPEG2000, however, are much larger than those of JPEG
blocks. For example, the lowest conformance profile for
JPEG2000 decoders insists that images should either be
untiled or use 128 128 tiles. JPEG blocking artifacts are
revealed in Fig. 23, while Fig. 20 exposes tile boundary
artifacts in a tiled JPEG2000 image.

It is important to realize that JPEG2000 does not mandate
the use of tiles at all. Untiled images also possess spatial ac-
cessibility properties, as described below, while being free
from boundary artifacts. All conformance profiles support
untiled images, with arbitrarily large dimensions. In fact, for
maximum interoperability, tiles are best avoided. Tiles are
also not recommended for applications requiring substantial
resolution scalability. If a large image is compressed using
128 128 tiles and subsequently decompressed at one eighth
of the original resolution, the effective tile size is only 16

16, which is far too small to support an efficient com-
pressed representation of the reduced resolution image, using
the coding techniques defined by JPEG2000.

B. Precincts and Packets

As noted in Section I-B, the fact that “code-blocks” are
coded independently is also a source of spatial accessibility
in JPEG2000. Code-blocks form a partition of the image sub-
bands, rather than the image itself. Each code-block has a
limited region of influence within the reconstructed image,
due to the finite support of the subband synthesis filters (see
Fig. 7). Thus, given an image region of interest, it is pos-
sible to find the code-blocks whose influence intersects with
that region and to selectively decompress only those code-
blocks. This is discussed further in Section V. For the mo-
ment, however, we focus on the problem of accessing code-
blocks within a JPEG2000 code-stream.

Unlike tiles, code-blocks are not explicitly delineated by
code-stream markers. Direct access to code-blocks is fur-
ther hampered by the fact that each code-block’s bitstream
may be distributed across many quality layers and the infor-
mation describing these contributions is itself coded to ex-
ploit redundancy between neighboring code-blocks within
the same subband. To overcome these obstacles, JPEG2000
defines spatial structuring elements known as “precincts.”
Each image resolution, LL(see Fig. 2) of each tile-com-
ponent has its own precinct partition.

The purpose of precincts is to collect code-blocks into
spatial and resolution groupings. As shown in Fig. 16, the
precinct partition induces a partition of the subbands which
are involved in synthesizing LLfrom the next lower reso-
lution LL , if any. In a DWT with levels, the precinct
partition on LL is a partition of the code-blocks belonging
to that subband. For , the precinct partition on LLin-
duces a partition of the subbands HL, LH and HH ,
through a convention which associates each sample in these
subbands with a unique location on LL. By appropriately
constraining the allowable dimensions for code-blocks and
precincts, JPEG2000 ensures that the induced precincts on
HL , LH , and HH each contain a whole number of

1348 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

code-blocks. In this way, each code-block in the image is as-
sociated with exactly one precinct. In the example of Fig. 16,
each precinct contains four code-blocks from each of its con-
tributing subbands.

The value of precincts is that they may be explicitly
identified as self-contained entities within a JPEG2000
code-stream. The inter-block coding of layer contributions
mentioned in Section III-C extends only to blocks which
belong to the same precinct, so the code-blocks of one
precinct may be recovered without reference to any other.
Apart from marker codes and their associated param-
eter data which are used to specify coding parameters, a
JPEG2000 code-stream can be viewed as a concatenated list
of “packets,” where each packet consists of the contributions
of all code-blocks from a single precinct to a single quality
layer, together with the information required to identify the
size of these contributions. In this way, a packet represents
a single quality increment (one layer) of a single resolution
increment (LL to LL), over a limited spatial region
(precinct). Each image component of each tile has its own
precincts and, hence, packets.

JPEG2000 provides a rich language for describing the
order in which packets appear within the code-stream.
Packets may be sequenced in resolution-major, compo-
nent-major, or quality-major orders. Spatially progressive
packet sequences are also defined to support low-memory
streaming devices. In these sequences, the packets appear
in an order which allows the image to be compressed or
rendered progressively from top to bottom without buffering
the entire compressed data stream.

The spatial extent of precincts may be separately adjusted
in each resolution of each tile-component. Precincts may be
so small that they include only one code-block from each
of the contributing subbands or they may be as large as 2
samples. Larger precinct sizes lead to somewhat higher com-
pression efficiency at the expense of spatial accessibility.
However, code-block data from an existing code-stream can
be repacked into smaller or larger precincts with relatively
little effort. The image server application described in Sec-
tion V-A does exactly this.

JPEG2000 code-streams may also contain optional pointer
information, which identifies the locations of particular tiles
and/or particular packets. Such information allows regions of
interest within the image to be selectively extracted from the
code-stream and decompressed on demand.

V. INTERACTIVE IMAGE RETRIEVAL

The spatial accessibility features of JPEG2000 provide a
firm foundation for interactive imaging applications. These
features are extensively exploited by the Kakadu software
tools, developed at the University of New South Wales. Ap-
plications based around Kakadu can choose to decompress
any selected spatial region of any desired image components
at any desired resolution. The high-level object interfaces of-
fered by Kakadu allow applications to work with the com-
pressed image from a geometric perspective which is rotated,
flipped, windowed, or zoomed relative to the original. Image

data are decompressed incrementally, in accordance with the
requested geometry, in a manner which avoids any unneces-
sary computation or buffering.

These facilities allow enormous compressed images to be
interactively decompressed and rendered with comparative
ease. The “kdu_show” application7 has been used to inter-
actively view compressed images with uncompressed sizes
of up to 6 GB. In fact, the size of the image need have very
little impact on the responsiveness of the application or its
memory and computational requirements. This is because
Kakadu loads and parses only those portions of the code-
stream which are required to reconstruct the current region
and resolution of interest.8 A caching strategy unloads previ-
ously recovered code-block bitstreams from memory as nec-
essary.

A. Remote Browsing With JPIK

The Kakadu software framework also offers services to
support interactive browsing of JPEG2000 compressed im-
ages over networks. Our recent experience with such services
has been in the context of the “JPEG2000 Interactive with
Kakadu” (JPIK)9 protocol. JPIK is a connection-oriented
network communication protocol using TCP, and optionally
UDP, for the underlying network transport. As suggested by
Fig. 17, the client communicates changes in its current re-
gion, resolution, and image components of interest, which
the server uses to customize its ongoing transmission of com-
pressed data. The server maintains a mirror image of the state
of the client’s cache, transmitting only new data which are
not already available to the client.

The JPIK server essentially delivers a sequence of
JPEG2000 packets to the client. The server recovers code-
blocks of interest from the source code-stream on demand,
taking advantage of whatever auxiliary pointer information
that code-stream offers to minimize memory and disk
accesses. It repackages the code-blocks on the fly into valid
JPEG2000 packets which have the smallest precinct dimen-
sions consistent with the code-block size. This means that
each LL band precinct will have exactly one code-block
and all other precincts will have three code-blocks, one from
each of the HL, LH , and HH subbands at the relevant
DWT level . The original source code-stream’s layering
convention is used to build packets for these precincts,
which are then delivered to the client. The first packet of
every precinct whose code-blocks contribute to the current
region of interest is sent first, followed by the second packet
and so forth. An efficient variable-length signaling scheme
is used to identify the particular packets which are being
transmitted so that the client knows how to slot them into its
cache.

7The application may be freely downloaded from http://www.kakadusoft-
ware.com

8These statements are contingent on the use of modest precinct dimen-
sions and the existence of suitable pointer information in the code-stream.
In any event, Kakadu always loads the smallest possible amount of the code-
stream at hand, which is required to satisfy the application’s needs.

9A complete description of the JPIK protocol may be found by following
the links at http://www.kakadusoftware.com

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1349

Fig. 17. Client–server interaction in a JPIK remote image browsing system. Note that the server
maintains only the state of the client’s cache and not its contents.

Fig. 18. Results of JPIK image browsing, showing a 972� 883
fragment from the full 2944� 1966 image. The reconstruction is
based upon 59.4 kBytes of transmitted packet data, including all
identifying headers.

Fig. 19. Expanded view of the client’s region of interest in Fig. 18.

In this way, the client gradually accumulates information
concerning the image, with higher image quality in those re-
gions which the user has spent more time browsing. Fig. 18
shows the image quality obtained after a brief browsing ses-
sion in which the user quickly zooms into an initial low-res-
olution version of the image, focusing attention on the region
shown in Fig. 19. The original full color image has dimen-
sions (width by height) of 2944 1966 for a total uncom-
pressed size of 17.4 MB. The image is compressed to a max-
imum bit rate of 2 b/pixel to produce a 1.47-MB JPEG2000
file which is managed by the server. The server delivers a
total of 59.4 kBytes to the client, which is enough to transfer
all data relevant to the client’s region of interest. The server
will not resume transmission until the client’s region or res-
olution of interest change.

Notice that the quality of the reconstructed image de-
creases progressively, with distance from the region of
interest. In fact, Fig. 18 shows only a 972 883 region
cropped from the complete image; quality continues to
decline toward the borders of the full image (not shown
here). This behavior provides convenient visual cues for
interactive navigation within the image; it may be attributed
to the properties of the DWT and the block-coding algorithm
as follows. Recall from Section II-B that DWT synthesis
involves the accumulation of overlapping contributions
from each subband sample. The span of the overlapping
synthesis functions grows as with the DWT level . In
the example at hand, the 5/3 transform has been used, with
32 32 code-blocks. The fraction of any given subband’s
samples which fall into one of its code-blocks also grows as

. Since any code-block which intersects with the region
of interest will eventually be delivered in full to the client,
low-resolution information is bound to be available at a
considerable distance from the region of interest, while
high-resolution information is much more localized.

B. To Tile or Not to Tile?

Intuitively, one would expect that tiling the image should
offer some advantages over the strategy described hitherto
in which packets and code-blocks alone form the basis for
spatial accessibility. This is because tiles are compressed en-
tirely independently so that only a few tiles might be required
to reconstruct a region of interest. Interestingly, our experi-
ence with the JPIK protocol suggests otherwise. The Kakadu
server can deliver both tiled and untiled images to a remote
client. In the case of tiled images, the DWT synthesis func-
tions are confined to lie within the boundaries of their respec-
tive tiles and the code-blocks, precincts, and packets are also
confined to tile boundaries.

Fig. 20 reveals the image quality obtained after browsing
a tiled version of the same image shown in Fig. 18, with
the same region of interest and tiles of size 128128. The
two images have been compressed in such a way as to yield
reconstructed images with almost exactly the same mean
squared error (MSE). In particular, the MSE of the region
of interest recovered after browsing is exactly the same in
both cases. To achieve this, the overall compressed bit rate
of the tiled image is 2.25 b/pixel, which is 12% higher than

1350 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 20. Results of browsing a tiled image with 128� 128 tiles,
using the JPIK protocol. The region of interest and most other
conditions are the same as those for the untiled result shown in
Fig. 18.

in the untiled case. To satisfy the client’s region of interest,
the server transmits a total of 62.4 kBytes to the client,
which is about 5% more than in the untiled case. Note that a
small amount of information is supplied for tiles which do
not intersect with the region of interest. This is because the
Kakadu server starts transmitting data immediately, before it
becomes aware of the client’s region of interest. In this way,
a few kBytes of low-resolution data are transmitted which
span the entire image; this generally assists in interactive
navigation.

Although it is difficult to precisely equalize the condi-
tions associated with tiled and untiled image transmission,
some useful conclusions may be drawn from Figs. 20 and
18. Even if tile boundary artifacts are not visible in the re-
gion of interest itself, their presence in surrounding regions
is somewhat disturbing. Moreover, tiles do not appear to
offer any advantage in transmission efficiency. In part, this
is a consequence of the fact that the tiled image contains
many more small code-blocks and packets than the untiled
image. For example, at resolution LL, the 128 128 tiles
measure only 16 16 so that the maximum packet size
is 16 16 and the maximum code-block size for each of
the associated subbands HL, LH , and HH is 8 8—re-
call that code-blocks and precincts are all confined to tile
boundaries. Small code-blocks do not compress efficiently
and the numerous packets incur significant signaling over-
head when transmitted to the client. While this overhead
could be reduced by using fewer DWT levels (the present
example has levels), this would compromise resolu-
tion scalability.

The reader is reminded that the preceding discussion is
concerned only with the value of tiles for scalable interac-
tive image distribution in the context of JPEG2000 Part 1.
Tiles do provide a simple tool for bounding memory require-
ments in both hardware and software implementations of

the standard.10 Tile boundaries can also be significantly re-
duced by exploiting some of the technologies embodied in
Part 2 of the standard (see Section VII-C). Nevertheless, the
JPEG2000 standard is not well adapted to coding small tiles
or indeed small images. Each tile of each image component is
decomposed into subbands and thence into code-blocks and
packets, each of which incurs some signaling overhead. This
signaling overhead grows with the number of DWT levels
and the number of quality layers, both of which play key
roles in imparting scalability to the compressed data stream.
Interactive browsing of large images requires extensive reso-
lution scalability, quality scalability for progressive display,
and spatial accessibility for region of interest display. Our
experience suggests that tiling has undesirable properties for
such applications.

VI. JPEG VERSUSJPEG2000

In this section, we briefly discuss the relative merits of
JPEG and JPEG2000. Additional information on this subject
can be found in [39]. While JPEG2000 provides an advantage
in compression efficiency over JPEG, its primary advantage
lies in its rich feature set. Thus, we begin our discussion with
this topic, deferring our discussion of compression perfor-
mance until later in the section.

The JPEG standard specifies four modes: sequential, pro-
gressive, hierarchical, and lossless. In the sequential mode,
imagery is compressed and decompressed in a block-based
raster fashion from top to bottom. On the other hand, if
the progressive mode of JPEG is employed, lower quality
decompressions are possible and the code-stream is ordered
so that the “most important” bits appear earliest in the
code-stream. Hierarchical JPEG is philosophically similar.
However, rather than improving quality, additional bytes are
used to successively improve the “resolution” (or size) of
the decoded imagery. When the lossless mode of JPEG is
employed, only lossless decompression is available. High
compression ratios are generally not possible with lossless
compression.

Certain interactions between the modes are allowed
according to the JPEG standard. For example, hierarchical
and progressive modes can be mixed within the same code-
stream. However, few if any implementations have exploited
this ability. Also, quite different technologies are employed
for the lossless and lossy modes. The lossless mode relies
on predictive coding techniques, while lossy compression
relies on the discrete cosine transform.

A JPEG code-stream must be decoded in the fashion
intended by the compressor. For example, if reduced reso-
lution is desired at the decompressor (when a progressive
mode was employed at the compressor), the entire image
must be decompressed and then downsampled. Conversion
of a code-stream from one mode to another can be difficult.

10We must point out, however, that memory-efficient implementations are
possible without resorting to tiling, since the DWT can be implemented ef-
ficiently without excessive working memory, as discussed in Section VII-C.
Also, general purpose decompressors cannot assume that an image has been
tiled.

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1351

Typically, such conversion must be accomplished via de-
compression/recompression, sometimes resulting in loss of
image quality.

JPEG2000 tightly integrates the benefits of all four JPEG
modes in a single compression architecture and a single code-
stream syntax. The compressor can decide maximum image
quality up to and including lossless. Also chosen by the com-
pressor is the maximum resolution or size. Any image quality
or size can be decompressed from the resulting code-stream,
up to and including those selected at encode time.

Many types of progressive transmission are supported
by JPEG2000. Progressive transmission is highly desirable
when receiving imagery over slow communication links.
As more data are received, the rendition of the displayed
imagery improves in some fashion. JPEG2000 supports
progression in four dimensions: quality, resolution, spatial
location, and component.

The first dimension of progressivity in JPEG2000 is
quality. As more data are received, image quality is improved.
AJPEG2000code-streamorderedforqualityprogressioncor-
responds roughly to a JPEG progressive mode code-stream.
We remark here that any quality up to and including lossless
may be contained within a single compressed code-stream.

The second dimension of progressivity in JPEG2000 is
resolution. In this type of progression, the first few bytes are
used to represent a small “thumbnail” of the image. As more
bytes are received, the resolution (or size) of the image in-
creases by factors of 2 on each side. Eventually, the full-size
image is obtained. A JPEG2000 code-stream ordered for res-
olution progression corresponds roughly to a JPEG hierar-
chical mode code-stream.

The third dimension of progressivity in JPEG2000 is
spatial location. With this type of progression, imagery can
be decompressed in approximately raster fashion, from top
to bottom. This type of progression is particularly useful
for memory-constrained applications such as printers. It is
also useful for encoding. Low-memory scanners can create
spatially progressive code-streams “on the fly” without
buffering either the image or the compressed code-stream.
A JPEG2000 code-stream ordered for progression by spatial
location corresponds roughly to a JPEG sequential mode
code-stream.

The fourth and final dimension of progressivity is the
component. JPEG2000 supports images with up to 16 384
components. Most images with more than four components
are from scientific instruments (e.g., LANDSAT). More
typically, images are one component (gray-scale), three
components (e.g., RGB and YCbCr), or four components
(CMYK). Overlay components containing text or graphics
are also common. With progression by component, a
gray-scale version of an image might become available first,
followed by color information, followed by overlaid annota-
tions, and text, etc. This type of progression, in concert with
the other progression types, can be used to effect various
component interleaving strategies.

The four dimensions of progressivity are very powerful
and can be “mixed and matched” within a single code-stream.
That is, the progression type can be changed within a single

Fig. 21. Performance comparison of JPEG and JPEG2000.

code-stream. For example, the first few bytes might contain
the information for a low-quality, gray-scale, thumbnail
image. The next few bytes might add quality, followed by
color. The resolution of the thumbnail might then be increased
several times so that the size is appropriate for display on a
monitor. The quality could then be improved until visually
lossless display is achieved. At this point, the viewer might
desire to print the image. The resolution could then be in-
creased to that appropriate for the particular printer. If the
printer is black and white, the color components can be
omitted from the remainder of the code-stream.

The main points to be understood from this discussion are
that: 1) the imagery can be improved in many dimensions as
more data are received and 2) only the data required by the
viewer need to be transmitted or decoded. This can dramati-
cally improve the latency experienced by an image browsing
application. Thus, the “effective compression ratio” experi-
enced by the client can be many times greater than the actual
compression ratio as measured by file size at the server.

Although stored files can only have a single order, an
existing JPEG2000 code-stream can always be parsed
and rewritten with a different progression order without
actually decompressing the image. A smart server can even
construct the most appropriate progression order on the fly,
in response to user requests. The potential for intelligent
and bandwidth-efficient client–server applications based on
JPEG2000 has already been demonstrated in Section V-A.
By contrast, the different progressions offered by JPEG
involve various modifications to the underlying coding
algorithm, which hampers efficient or dynamic reordering
of the information by image servers and other applications.

A. Compression Performance

1) Lossy Compression:Fig. 21 [3] provides a perfor-
mance comparison for two different JPEG code-streams
and three different JPEG2000 code-streams representing
the “bike” image (gray-scale, 2048 2560) from the
JPEG2000 test set. A portion of this image is shown in
Fig. 3. The two JPEG code-streams were generated using
the Independent JPEG group software available online.11

These JPEG code-streams are progressive (P-DCT) and
sequential (S-DCT), each with optimized Huffman tables.

11Available. [Online.] http://www.ijg.org

1352 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

The three JPEG2000 code-streams were generated using
the JPEG2000 Verification Model software. They are single
layer12 with the 9/7 wavelet transform (S-9,7), six-layer
quality progressive with the 9/7 wavelet transform (P6-9,7),
and seven-layer quality-progressive with the reversible 5/3
wavelet transform (P7-3,5). In the last two cases, a single
code-stream is generated, having quality layers optimized
for the bit rates 0.0625, 0.125, 0.25, 0.5, 1.0, and 2.0
b/pixel. The single code-stream is simply truncated to obtain
compressed representations at each test bit rate. For the 5/3
reversible transform, the seventh quality layer yields truly
lossless decompression.

With this image,13 the JPEG2000 results are significantly
better than those produced using JPEG, for all modes and at
all bit rates. With JPEG2000, the progressive performance is
almost identical to the single-layer performance at bit rates
for which the layers are optimized. The slight difference is
due solely to the increased signaling cost associated with the
additional layers. As mentioned in Section I-B, it is possible
to decode at rates between those corresponding to layers.
This is accomplished by discarding partial layers, with some
resulting suboptimality. This is the cause of the “scallops” in
the upper curves, where the progressive performance drops
somewhat below the single-layer performance. This effect
can be mitigated by adding more layers. The scallops will be
effectively removed, but at the expense of a minor decrease
in overall PSNR due to additional signaling overhead.

Although JPEG2000 provides significantly lower distor-
tion for the same bit rate, the computational complexity is
higher. The fastest JPEG2000 software implementations cur-
rently run roughly a factor of three times slower than opti-
mized JPEG implementations.

2) Lossless Compression:The lossless compression per-
formance of JPEG2000, for natural photographic imagery,
is typically within about 2%–5% of JPEG-LS [40].14 For
compound documents, containing text and half tones, the
comparison is not always as favorable. For such documents,
JPEG-LS generally outperforms JPEG2000, producing
compressed files 40%–45% smaller. On the other hand, com-
puter-generated graphic imagery containing a limited number
of colors can be efficiently compressed with JPEG2000. A
particularly effective approach treats the image as a single
palettized component. The sample values of this component
then specify image sample colors via a look-up-table (LUT).
Careful construction of the LUT often results in compression
performance close to that of JPEG-LS [41].

3) Binary Imagery: Binary valued components (or
binary valued tiles of components) can be compressed using
JPEG2000. Lossless compression of such binary data can
be accomplished by setting the bit depth to 1 and setting
0 levels of wavelet transform. The result of these settings
is that no wavelet transform is performed, and the binary
image is treated as a single bit plane at a single resolution.
This bit plane is divided into code-blocks and subjected to

12Code-streams with only one quality layer are not distortion scalable. A
separate code-stream must be generated for each bit rate under test.

13There are images where the difference can be substantially less, espe-
cially in the range from 1.0 to 1.5 b/pixel.

14Software available at http://www.hpl.hp.com/loco/software.htm

context-dependent arithmetic coding. The performance of
JPEG2000 is very similar to that of the CCITT facsimile
compression standard G4 [42]. On the other hand, JBIG [43]
outperforms JPEG2000, producing files which are about
30%–35% smaller.

Unfortunately, when the processing described in the
previous paragraph is employed, scalability in quality and
resolution are lost. On the other hand, spatial random access
is preserved. If the wavelet transform is employed for com-
pressing binary imagery, scalability and progressivity are
preserved, but with some loss in compression efficiency over
the “zero-level” case. The quality of lossy decompressed
binary imagery can vary widely, depending on the image
content and bit rate chosen.

B. Subjective Comparison of JPEG and JPEG2000

Visual comparisons of JPEG versus JPEG2000 have been
conducted by Fujifilm Software California and Eastman
Kodak [44].15 The JPEG2000 imagery for these tests was
generated using the 9/7 wavelet transform and contrast
sensitivity function (CSF) weighting as described in [45].
Such weighting is used to modify the embedding of the
code-stream so that (visually) more important data appear
earlier. The JPEG imagery was generated using the Inde-
pendent JPEG Group implementation. The default mode
was employed (i.e., baseline sequential JPEG) and Huffman
tables were optimized. All visual comparisons were made
using 24-b color prints at 300 dpi.

The tests were conducted using six 24-b color images
with natural photographic content. Ten “reference” JPEG
images were created for each of the six original images.
These reference images were created by compressing and
decompressing to precise bit rates of 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.2, and 1.4 bit per color pixel. For example,
a bit rate of 0.5 b/pixel corresponds to a compression ratio
of 48:1. Four JPEG2000 “test” images were also created for
each original image. These test images were compressed/de-
compressed to rates of 0.25, 0.50, 0.75, and 1.00 b/pixel
using the JPEG2000 Verification Model software.

Visual quality testing was then carried out by six ob-
servers.16 For a given original image, the JPEG reference
prints were placed on a table in order of lowest to highest
rate. Each observer was given a JPEG2000 test image and
asked to find the JPEG reference image of comparable
quality. This process was repeated for each JPEG2000 rate
and each original image. In this way, the rate required for
JPEG to achieve the same visual quality as JPEG2000 was
determined.

The average of these results over the six observers is shown
in Fig. 22. Two of the curves in this figure show results for
individual images. The third curve shows the results averaged
over all images. Each of these three curves represents the rate
required by JPEG to achieve comparable perceptual quality to
that of JPEG2000. For ease of comparison, the figure includes
a fourth curve, indicating the rate required by JPEG2000 (to

15Also available from http://www.jpeg.org/public/wg1n1583.ppt
16Subsequent testing at Fujifilm Software California using more

observers yielded similar results [58].

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1353

Fig. 22. Rate required to achieve visual quality equivalent to
that of JPEG2000.

achieve the quality of JPEG2000). Of course, this latter curve
is a straight line of slope 1.

From the figure, we see that, in the case of the bike image,
JPEG2000 provides a decrease in compressed bit rate
ranging from 14% to 47% over that of JPEG. Equivalently,
JPEG requires an increase in bit rate ranging from 16% to
88% in order to achieve equivalent visual quality to that of
JPEG2000. The results for the woman image are similar. On
average, JPEG2000 provides a bit-rate reduction of between
11% and 53% relative to JPEG.

In each case, the largest improvements occur at the lower
rates. This is not surprising since, at low rates, the “blocking”
artifacts of JPEG tend to be significantly more annoying than
the “smoothing” of JPEG2000, as demonstrated in Fig. 23.
In fact, a general observation reported in [44] was that JPEG
imagery tends to be “sharper” than JPEG2000 imagery at
all encoding rates. Furthermore, the sharpness of JPEG in-
creases more quickly than that of JPEG2000 as encoding rate
is increased. At very high rates (1.0 b/pixel), artifacts are
nearly imperceptible for both JPEG and JPEG2000 compres-
sion. Careful observation, however, reveals that JPEG quality
is comparable to that of JPEG2000. In fact, JPEG imagery
can be slightly superior to JPEG2000 imagery at rates on the
order of 2.0 b/pixel. On the other hand, the JPEG sharpness
advantage is more than overcome at lower rates by the ab-
sence of blocking artifacts in JPEG2000.

VII. OTHER FEATURES AND ENHANCEMENTS

A. Region of Interest Coding

In previous sections, we mentioned the possibility of
varying quality by spatial region. Such variation can be
effected at encode time or in subsequent parsing or decode
operations. This capability derives from the independence
of code-blocks, and so the code-block dimensions govern
the granularity of the spatial regions that can be targeted.

JPEG2000 also allows the encoder to select entirely arbi-
trary regions of interest for preferential treatment [46], [47].
In this case, the region of interest (ROI) must be chosen at en-
code time and is not easily altered via parsing or decoding.

For this form of ROI coding, wavelet coefficients that af-
fect image samples within the ROI are preemphasized prior
to bit-plane coding. This preemphasis amounts to a binary
upshift of coefficient magnitudes. The amount of upshifting
must be such that all bit planes of all wavelet samples in the
ROI are encoded prior to the encoding of the most significant
bit plane of the background (non-ROI) wavelet samples. For
this reason, this method of ROI coding is referred to as the
“max-shift” method. An example of this form of ROI coding
is shown in Fig. 24. The overall encoding rate for this image
is 0.125 b/pixel, large enough that some of the background
data has been decoded.

B. Additional Parts to JPEG2000

The JPEG2000 standard is currently comprised of six parts,
with additional parts under discussion. For the purpose of
interchange, it is important to have a standard with a limited
numberofoptions,so thatdecoders inbrowsers,printers,cam-
eras, or palm-top computers can be counted on to implement
all options. In this way, an encoded image will be displayable
by all devices.17 For this reason, Part 1 describes the minimal
decoder and code-stream syntax required for JPEG2000,
which should be used to provide maximum interchange.

Part 1 [1] also describes an optional minimal file format
known as JP2. The “.jp2” suffix should be applied only to
files which conform to this file format, not to files which
contain only JPEG2000 code -streams. JP2 is structured as a
sequence of “boxes.” Each box consists of a box-type identi-
fier, a box length, and box contents. In addition to identifica-
tion boxes and a box containing the compressed code-stream,
every JP2 file must contain a description of the color space
and associated information required to correctly render the
image to a display device. JP2 defines a variety of optional
boxes for describing image resolution, copyright ownership,
and so forth [48].

There are many applications for image compression where
interchange is less important than other requirements. For
these applications, Part 2 [49] of the standard describes op-
tional “value-added” extensions to enhance compression per-
formance or enable efficient compression of less common
data types, at the expense of interoperability. These exten-
sions are not required of all implementations so that images
encoded using Part 2 technologies may not be decodable by
Part 1 decoders. Part 2 also describes an enhanced file format,
known as JPX.

Part 3 [50], known as “Motion JPEG2000”18 or “MJ2,”
provides a file format for representing sequences of images,
each coded using the techniques described by JPEG2000
Part 1. The Part 3 file format is derived from Apple’s “Quick
Time” file format and is designed for compatibility with
MPEG-4. In fact, the file formats described by Parts 1, 2, 3
and 6 all share the box concept and other attributes borrowed

17It is worth noting that the standard specifies only the decoder and code-
stream syntax. Although informative descriptions of some encoding func-
tions are provided in the text of the standard, there are no requirements
that the encoder perform compression in any prescribed manner. This leaves
room for future innovations in encoder implementations.

18We note that “Motion JPEG” has been a commonly used format for the
purpose of video editing (e.g., in production studios), even though it was
never officially standardized.

1354 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

Fig. 23. Lena image (512� 512) decompressed at 0.25 b/pixel using JPEG2000 (left) and JPEG
(right). A cropped and zoomed portion of the fully decompressed image is displayed here.

from “Quick Time.” These file formats may be said to
belong to the “JP2 family,” and it is possible to construct
files conforming to all four formats simultaneously. Part
6 [51] describes a file format known as “JPM,” which is
tailored to the needs of compound document compression.

Part 4 [52] provides compliance/conformance definitions
and testing procedures for implementations of Part 1, while
Part 5 [53] includes reference software for Part 1. There are
two software implementations included in Part 5. The JJ2000
implementation19 is written in Java, while the JasPer imple-
mentation20 [54] is written in C. Parts 4 and 5 work together
to assist developers in producing compliant implementations.

At the time of this writing, several additional parts to the
standard have been created as work items. These new parts
deal with three-dimensional (3-D) coding extensions (Part
8), client–server protocols for JPEG2000 (Part 9), security
(Part 10), and wireless transmission of JPEG2000 content
(Part 11). Part 7 was reserved for a possible description of
reference hardware implementations for Part 1, but is not cur-
rently being progressed.

C. Part 2 Features

Up to now, this paper has discussed only the technology in
JPEG2000 Part 1. The purpose of this subsection is to pro-
vide a high-level overview of the additional features found in
Part 2. Part 2 contains extensions to allow variable level off-
sets and point nonlinearities both as pre/postprocessing steps.
The variable-level offset capability is useful for adjusting the
“dc” level of imagery, while point nonlinearities provide for
contrast adjustments such as gamma corrections.

19Available. [Online.] http://jj2000.epfl.ch
20Available. [Online.] http://www.ece.ubc.ca/~mdadams/jasper

Fig. 24. Example of ROI coding at 0.125 b/pixel. The rectangular
ROI in the facial region is well preserved at the expense of the
background.

As discussed previously, JPEG2000 Part 1 uses scalar
quantization with a zero bin (deadzone) twice as wide
as the other bins. JPEG2000 Part 2 allows for adjusting
the deadzone sizes in scalar quantization as well as the
ability to employ trellis-coded quantization [55]. Nonlinear
compensations for visual masking can also be applied, with
either scalar quantization or trellis-coded quantization, to
obtain substantial improvements in visual quality [56], [57].

Several extensions are supported with respect to the
wavelet transform. Substantial flexibility is available to
select custom wavelet kernels. A rich language is also

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1355

provided for modifying the wavelet decomposition tree
structure. Finally, the wavelet transform may be applied to
overlapping “cells” and/or tiles. This latter feature allows
block-based processing to be performed without the intro-
duction of severe block artifacts.

Extended decorrelating transforms for multiple compo-
nent imagery are also included in JPEG2000 Part 2. Whereas
Part 1 defines only a single reversible color transform and a
single irreversible transform (RGB to YCbCr), Part 2 sup-
ports general linear transforms, predictive transforms, and
wavelet transforms for the decorrelation of components.

Enhanced support is also provided for ROI encoding. In
addition to the max-shift method discussed in Section VII-A
above, Part 2 provides for arbitrary up-shifts, with explicit
signaling of the regions whose coefficient magnitudes are
to be shifted. Explicit region signaling is confined to rect-
angular and elliptical regions of interest.

Finally, JPEG2000 Part 2 specifies the extended file
format known as JPX. JPX is backward compatible with the
JP2 file format of Part 1 but contains many enhancements.
Such enhancements provide more flexibility in the specifica-
tion of color spaces, opacity information, and metadata. Also
included is the ability to combine multiple code-streams to
obtain compositing or animation from a single JPX file.

VIII. SUMMARY

JPEG2000 is much more than just a new way to compress
digital imagery. Central to this new standard is the concept of
scalability, which enables image components to be accessed
at the resolution, quality, and spatial region of interest. The
technology on which JPEG2000 is based departs radically
from that used in the JPEG standard as an unavoidable con-
sequence of the features required of the new standard.

As demonstrated in this paper, JPEG2000 improves on the
compression performance offered by JPEG while simultane-
ously allowing interactive access to the image content. The
information in a JPEG2000 code-stream may be reordered at
will to suit a wide range of applications from memory-con-
strained hardware platforms such as printers to fully inter-
active client–server systems. It is possible to embed enor-
mous images in a JPEG2000 code-stream, with qualities all
the way up to lossless, while permitting access at much lower
resolutions and/or qualities over networks with only modest
capabilities.

Part 1 of the standard provides an excellent platform for
efficient, interoperable interaction with rich image content
while Part 2 provides extensions to serve the needs of special
purpose applications.

REFERENCES

[1] Information Technology—JPEG 2000—Image Coding System—Part
1: Core Coding System, ISO/IEC 15 444-1, 2000.

[2] D. Taubman and M. Marcellin,JPEG 2000: Image Compression
Fundamentals, Standards and Practice. Norwell, MA: Kluwer,
2002.

[3] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, “An overview
of JPEG2000,” inProc. IEEE Data Compression Conf., Snowbird,
UT, 2000.

[4] M. Rabbani and R. Joshi, “An overview of the JPEG2000 still image
compression standard,”Signal Process.: Image Commun., vol. 17,
pp. 3–48, Jan. 2002.

[5] M. D. Adams, “The JPEG-2000 still image compression stan-
dard—Tech. Rep. distributed with the JasPer JPEG-2000 software,”,
[Online]. Available: http://www.ece.ubc.ca/~mdadams/jasper, Tech.
Rep. N2412, ISO/IEC JTC1/SC29/WG1, Sept. 2001.

[6] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still
image coding system: An overview,”IEEE Trans. Consumer Elec-
tron., vol. 46, pp. 1103–1127, Nov. 2000.

[7] Information Technology—JPEG—Digital Compression and Coding
of Continuous-Tone Still Image—Part 1: Requirements and Guide-
lines, ISO/IEC 10 918-1 and ITU-T Recommendation T.81, 1994.

[8] G. K. Wallace, “The JPEG still picture compression standard,”
Commun. ACM, vol. 34, pp. 30–44, Apr. 1991.

[9] W. Pennebaker and J. Mitchell,Still Image Data Compression Stan-
dard. New York: Van Nostrand, 1992.

[10] M. Gormish, E. Schwartz, A. Keith, M. Boliek, and A. Zandi, “Loss-
less and nearly lossless compression of high-quality images,”IEEE
Trans. Signal Processing, vol. 45, pp. 62–70, Mar. 1997.

[11] J. Lim, Two-Dimensional Signal and Image Pro-
cessing. Englewood, NJ: Prentice-Hall, 1990.

[12] M. Vetterli and J. Kovăcević, Wavelets and Subband Coding, NJ:
Prentice-Hall, 1995.

[13] M. Smith and S. Eddins, “Analysis–synthesis techniques for
subband image coding,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. 48, pp. 1446–1456, Aug. 1990.

[14] C. Brislawn, “Classification of nonexpansive symmetric extension
transforms for multirate filter banks,”Appl. Comput. Harmon. Anal.,
vol. 3, pp. 337–357, 1996.

[15] A. Croisier, D. Esteban, and C. Galand, “Perfect channel splitting
by use of interpolation/decimation/tree decomposition techniques,”
in Int. Conf. Information Sciences and Systems, Aug. 1976, pp.
443–446.

[16] , “Application of quadrature mirror filters to split band voice
coding systems,” inProc. Int. Conf. Acoust. Speech and Signal Pro-
cessing, 1977, pp. 191–195.

[17] J. Johnston, “A filter family designed for use in quadrature mirror
filter banks,” in Proc. Int. Conf. Acoust. Speech and Signal Pro-
cessing, 1980, pp. 291–294.

[18] F. Mintzer, “Filters for distortion-free two-band multirate filter
banks,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-33, pp. 626–630, June 1985.

[19] M. Smith and T. I. Barnwell, “Exact reconstruction techniques for
tree structured subband coders,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-34, pp. 434–441, June 1986.

[20] M. Vetterli, “Filter banks allowing perfect reconstruction,”Signal
Process., vol. 10, pp. 219–244, Apr. 1986.

[21] P. Vaidyanathan, “Theory and design of m-channel maximally desi-
mated quadrature mirror filters with arbitrary m, having the perfect
reconstruction property,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-35, pp. 476–492, Apr. 1987.

[22] I. Daubechies, “Orthonormal bases of compactly supported
wavelets,”Commun. Pure Appl. Math., vol. 41, pp. 909–996, Nov.
1998.

[23] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[24] S. Mallat, “A theory for multiresolution signal decomposition; the
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 11, pp. 674–693, July 1989.

[25] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases
of compactly supported wavelets,”Commun. Pure Appl. Math., vol.
45, pp. 485–560, June 1992.

[26] D. Le Gall and A. Tabatabai, “Sub-band coding of digital images
using symmetric short kernel filters and arithmetic coding tech-
niques,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing, Apr. 1988, pp. 761–764.

[27] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,”Appl. Comput. Harmon. Anal., vol. 3, pp.
186–200, Apr. 1996.

[28] R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, “Wavelet
transforms that map integers to integers,”Appl. Comput. Harmon.
Anal., vol. 5, pp. 332–369, July 1998.

[29] M. Adams and F. Kossentini, “Reversible integer-to-integer wavelet
transforms for image compression: Performance evaluation and
anaylsis,”IEEE Trans. Image Processing, vol. 9, pp. 1010–1024,
June 2000.

1356 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 8, AUGUST 2002

[30] D. Taubman and A. Zakhor, “A common framework for rate and
distortion based scaling of highly scalable compressed video,”IEEE
Trans. Circuits Syst. Video Technol., pp. 329–354, Aug. 1996.

[31] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Processing, vol. 9, pp. 1158–1170,
2000.

[32] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data com-
pression,”Commun. ACM, vol. 30, pp. 520–540, June 1987.

[33] E. Ordentlich, M. Weinberger, and G. Seroussi, “A low-complexity
modeling approach for embedded coding of wavelet coefficients,” in
Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 1998, pp.
408–417.

[34] F. Sheng, A. Bilgin, P. Sementilli, and M. Marcellin, “Lossy and
lossless image compression using reversible integer wavelet trans-
forms,” in Proc. IEEE Int. Conf. Image, Oct. 1998, pp. 876–880.

[35] D. Taubman, “Embedded, independent block-based coding of sub-
band data,”, Tech. Rep. N871R, ISO/IEC JTC1/SC29/WG1, July
1998.

[36] M. Marcellin, T. Flohr, A. Bilgin, D. Taubman, E. Ordentlich, M.
Weinberger, G. Seroussi, C. Chrysafis, T. Fisher, B. Banister, M.
Rabbani, and R. Joshi, “Reduced complexity entropy coding,”, Tech.
Rep. N1312, ISO/IEC JTC1/SC29/WG1, June 1999.

[37] A. Said and W. Pearlman, “A new, fast and efficient image codec
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst. Video Technol., pp. 243–250, June 1996.

[38] J. Li and S. Lei, “Rate-distortion optimized embedding,” inProc.
Picture Coding Symp., Berlin, Germany, Sept. 1997, pp. 201–206.

[39] D. Santa Cruz, R. Grosbois, and T. Ebrahimi, “JPEG 2000 per-
formance evaluation and assessment,”Signal Process.: Image
Commun., vol. 17, pp. 113–130, Jan. 2002.

[40] Information Technology—JPEG-LS—Lossless and Near-Lossless
Compression of Continuous-Tone Still Images, ISO/IEC 14495-1
and ITU-T Recommendation T.87, 1999.

[41] W. Zeng, J. Li, and S. Lei, “ An efficient color re-indexing scheme
for palette-based compression,” inProc. IEEE Int. Conf. Image Pro-
cessing, vol. 3, Sept. 2000, pp. 476–479.

[42] CCITT Recommendation T.6, “Facsimile coding schemes and
coding control functions for group 4 facsimile apparatus,”, Recom-
mendation T.6., 1984.

[43] JBIG Bi-Level Image Compression Standard, ISO/IEC 11 544 and
ITU-T Recommendation T.82, 1993.

[44] T. Chinen and A. Chien, “Visual evaluation of JPEG2000 color
image compression performance,”, Tech. Rep. N1583, ISO/IEC
JTC1/SC29/WG1, Mar. 2000.

[45] M. Nadenau and J. Reichel, “Opponent color, human vision and
wavelets for image compression,” inProc. 7th Color Imaging Conf.,
1999, pp. 237–242.

[46] J. Askelof, M. Larsson Carlander, and C. Christopoulos, “Region of
interest coding in JPEG 2000,”Signal Process.g: Image Compres-
sion, vol. 17, pp. 105–111, 2002.

[47] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods
for encoding regions of interest in the upcoming JPEG 2000 still
image coding standard,”IEEE Signal Processing Lett., vol. 17, pp.
247–249, Sept. 2000.

[48] J. Houchin and D. Singer, “File format technology in JPEG 2000
enables flexible use of still and motion sequences,”Signal Process.:
Image Compression, vol. 17, pp. 131–144, Jan. 2002.

[49] Information Technology—JPEG 2000 Image Coding System—Part
2: Extensions, ISO/IEC 15 444-2, 2002.

[50] Information Technology—JPEG 2000 Image Coding System—Part
3: Motion JPEG 2000, ISO/IEC 15 444-3, 2002.

[51] Information Technology—JPEG 2000 Image Coding System—Part
6: Compound Image File Format, ISO/IEC 15 444-6, 2002.

[52] Information Technology—JPEG 2000 Image Coding System—Part
4: Compliance Testing, ISO/IEC 15 444-4, 2002.

[53] Information Technology—JPEG 2000 Image Coding System—Part
5: Reference Software, ISO/IEC 15 444-5, 2002.

[54] M. Adams and F. Kossentini, “JasPer: A software-based JPEG-2000
codec implementation,” inProc. IEEE Int. Conf. Image Processing,
vol. 2, Oct. 2000, pp. 53–56.

[55] J. Kasner, M. Marcellin, and B. Hunt, “Universal trellis coded quan-
tization,” IEEE Trans. Image Processing, vol. 8, pp. 1677–1687,
Dec. 1999.

[56] D. S. Zeng and W.and S. Lei, “Point-wise extended visual masking
for JPEG-2000 image compression,” inProc. IEEE Int. Conf. Image
Processing, vol. 1, Sept. 2000, pp. 657–660.

[57] W. Zeng, S. Daly, and S. Lei, “An overview of the visual optimiza-
tion tools in JPEG 2000,”Signal Process.: Image Commun., vol. 17,
pp. 85–104, Jan. 2002.

[58] T. Chinen, private communication.

David S. Taubman received the B.S. and B.E.
(electrical) degrees from the University of
Sydney, Sydney, Australia, in 1996 and 1998,
respectively, and the M.S. and Ph.D. degrees
from the University of California at Berkeley in
1992 and 1994, respectively.

From 1994 to 1998, he worked at Hewlett-
Packard’s Research Laboratories, Palo Alto, CA,
joining the University of New South Wales, NSW,
Sydney, Australia, in 1998 as Senior Lecturer in
the School of Electrical Engineering. Since 1998,

he has been involved with ISO/IEC JTC1/SC29/WG1, contributing substan-
tially to the core JPEG2000 technology. He wrote the JPEG2000 Verification
Model Software (VM3A) and the popular Kakadu implementation of the
standard. He is also the coauthor, with M. Marcellin, of the bookJPEG2000:
Image Compression Fundamentals, Standards and Practice(Norwell, MA:
Kluwer, 2002). His research interests include highly scalable image and
video compression, inverse problems in imaging, perceptual modeling, and
multimedia distribution.

Dr. Taubman was awarded the University Medal from the University of
Sydney, the Institute of Engineers, Australia, Prize, and the Texas Instru-
ments Prize for Digital Signal Processing, all in 1998. He has received two
Best Paper awards from the IEEE Circuits and Systems Society in 1997
(for the 1996 paper “A Common Framework for Rate and Distortion Based
Scaling of Highly Scalable Compressed Video”) and from the IEEE Signal
Processing Society in 2002 (for the 2000 paper “High Performance Scalable
Image Compression with EBCOT”).

Michael W. Marcellin (Fellow, IEEE) was born in Bishop, CA, on July 1,
1959. He received the B.S. degree (summa cum laude) from San Diego State
University, San Diego, CA, in 1983 and the M.S. and Ph.D. degrees from
Texas A&M University, College Station, in 1985 and 1987, respectively, all
in electrical engineering.

Since 1988, he has been with the University of Arizona, Tucson, where he
is a Professor of electrical and computer engineering. His research interests
include digital communication and data storage systems, data compression,
and signal processing. He has authored or coauthored more than 100 papers
in these areas. He is a major contributor of technology to JPEG2000, the
emerging second-generation standard for image compression. Throughout
the standardization process, he chaired the JPEG2000 Verification Model
Ad Hoc Group, which was responsible for the software implementation
and documentation of the JPEG2000 algorithm. He is coauthor, with D. S.
Taubman, of the bookJPEG2000: Image Compression Fundamentals, Stan-
dards and Practice(Norwell, MA: Kluwer, 2002). This book is intended to
serve as a textbook on image compression fundamentals as well as the de-
finitive reference on JPEG2000.

Prof. Marcellin has served as Associate Editor for the IEEE
TRANSACTIONS ON IMAGE PROCESSING and has served on the orga-
nizing committees and as session chair for numerous conferences.
Recently, he served as Vice Chair of the program committee for IEEE
Globecom 1997 and as Technical Area Chair of the program committee
for the 1997 Asilomar Conference on Signals, Systems, and Computers.
He has served as a member of the program committees for the 2000, 2001,
and 2002 SPIE Conferences on Hybrid Image and Signal Processing, the
2000 IEEE Symposium on Geoscience and Remote Sensing, as well as
the 1999, 2000, 2001, and 2002 Data Compression Conferences. He is a
member of Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi. He is a 1992
recipient of the National Science Foundation Young Investigator Award,
and a corecipient of the 1993 IEEE Signal Processing Society Senior (Best
Paper) Award. He has received teaching awards from NTU (1990, 2001),
IEEE/Eta Kappa Nu student sections (1997), and the University of Arizona
College of Engineering (2000). In 2001, he was named the Litton Industries
John M. Leonis Distinguished Professor of Engineering at the University
of Arizona. While at San Diego State University, he was named the most
outstanding student in the College of Engineering.

TAUBMAN AND MARCELLIN: JPEG2000: STANDARD FOR INTERACTIVE IMAGING 1357

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

