### JPEG2000 Performance Result (so far...)

A HiRISE-centric update by Myche McAuley 2005-08-31

# JPEG2000 Testing

- Characteristics tested for:
  - Lossless compression, does it really work?
  - Attainable compression ratios?
    - Affect of tile sizes on compression ratio?
  - Timing characteristics of (de)compression?
    - Not critical, but important as JPEG2000 format used for Web artifacts
  - Data type support?
    - Byte?
    - Short?
    - Float? (still TBD)
  - Large image file support (> 500MB)?

### JPEG2000 Reference Software

- Used both Java and C reference implementations:
  - Java: JJ2000
    - http://jj2000.epfl.ch/
    - Caveat: compresses 8- and 16-bit data, but doesn't seem to support decompression to 16-bit
      - Didn't test extensively due to this restriction, but will investigate further
  - C: JasPer
    - http://www.ece.uvic.ca/~mdadams/jasper/
    - Compresses and decompresses 8- and 16-bit data
  - Both implementations currently require netpbm formatted files for input (PGM here)

### JPEG2000 Testing (cont.)

- Test images must be somewhat indicative of expected MRO HiRISE RDRs:
  - Use MEX HRSC data.
  - Two HRSC images used:
    - h0068\_0000\_s22.img (~600MB)
    - h0068\_0009\_s22.img (~55MB)
      - 1MB == 1024\*1024 bytes

### JPEG2000 Test Images

- Additional stresses for the JPEG2000:
  - Pretend the HRSC header, binary header table and line prefixes are part of the image data.
    - Basically, compress the whole kaboodle and see what happens
    - Seeing how the algorithm performs in the face of this extra entropy should by interesting, especially since what we're after is lossless compression.

### h0068\_0000\_s22.img

- 2618 x 119757
- Short data type
- Total size:
  - 627047673 bytes
- Histogram range:
  - With binary "noise"
    - Full 16-bit dynamic range
  - Image data only
    - [67,308], σ = 52.5

### h0068\_0009\_s22.img

- 2618 x 11013
- Short data type
- Total size:
  - 57664088 bytes
- Histogram range:
  - With binary "noise"
    - Full 16-bit dynamic range
  - Image data only
    - [62,188], σ = 9.2



## JPEG200 Tests computing environments

Used two platforms

– Linux

- AMD64, 2.2GHz CPU with 1GB RAM
- Mac OS X
  - Dual G5 Mac, 2.5GHz, with 1.5GB RAM
- Only crucial for timing performance, but interesting nonetheless

### JPEG2000 Lossless Compression ratios

Using JasPer (C code) reference software

|          | h0068_0000_s22 |             | h0068_0009_s22 |       |  |
|----------|----------------|-------------|----------------|-------|--|
| tilesize | 16-bit         | 8-bit       | 16-bit         | 8-bit |  |
| 1024     | 5.83           | 2.89        | 6.00           | 2.25  |  |
| 512      | 5.82           | 2.88        | 5.99           | 2.25  |  |
| 256      | 5.78           | 2.87        | 5.94           | 2.24  |  |
| 128      | 5.64           | 2.81        | 5.80           | 2.20  |  |
| 64       | <u>5.16</u>    | <u>2.59</u> | 5.28           | 2.06  |  |
| 32       | <u>4.02</u>    | <u>2.06</u> | 4.09           | 1.70  |  |

Underlined numbers indicate decompression failure for these tile sizes

### JPEG2000 (de)compression processing times

(times in seconds)

Using JasPer (C code) reference software times are (compression | decompression)

| On Mag             | h0068_0000_s22 |                  | h0068_0009_s22 |       |  |
|--------------------|----------------|------------------|----------------|-------|--|
| On Mac<br>tilesize | 16-bit         | 8-bit            | 16-bit         | 8-bit |  |
| 1024               | 253 217        | 216 198          | 21 22          | 21 19 |  |
| 512                | 200 187        | 181 169          | 18 16          | 20 17 |  |
| 256                | 140 129        | 124 105          | 15 21          | 14 10 |  |
| 128                | 174 172        | 154 159          | 18 12          | 17 12 |  |
| 64                 | <u>258 ???</u> | <u>227   ???</u> | 24 25          | 24 19 |  |
| 32                 | <u>488 ???</u> | <u>431 ???</u>   | 44 42          | 42 43 |  |

#### On Linux

| 1024 | 238 193        | 193 169        | 22 18 | 20 16 |  |
|------|----------------|----------------|-------|-------|--|
| 512  | 210 230        | 152 142        | 14 17 | 14 14 |  |
| 256  | 157 247        | 107 109        | 10 15 | 11 10 |  |
| 128  | 162 313        | 101 127        | 11 15 | 10 10 |  |
| 64   | <u>208 ???</u> | <u>117 ???</u> | 13 21 | 12 13 |  |
| 32   | <u>253 ???</u> | <u>187 ???</u> | 18 29 | 18 27 |  |
|      |                |                |       |       |  |

Underlined numbers indicate decompression failure for these tile sizes

### JPEG2000 Test Results

- Lossless compression achieved?
  - Yes, quite. Lossless compression ratios > 2:1 are impressive
- Tile size selection can have deleterious impact:
  - Smaller tiles better for error containment and web serving, but decrease compression ratio and decompression performance (insignificant issue).
     Pathological cases caused decompression to fail (not so insignificant).
  - Seems that a tile size of around 256 is pretty good
- Large file size support?
  - Yes, > 500MB. 2.3GB tests pending.

# Pending Tests

- Very large file support

   > 2GB (beyond 32-bit addressable range)
- Geometrically corrected and projected images (see next slide)
  - Large "blank" border areas
- Images with much larger dynamic range
  - Expectation that this will work, but just with lower compression ratios
- Floating point
  - Appears to be included in Part 10 of the spec.

### Images still to be tested

- As HiRISE archive will only use JPEG2000 for RDRs, it would follow that these might be map projected (or otherwise geometrically corrected) giving an image that has blank boundaries
  - This is expected to compress very well.
  - Performance impacts TBD



### **Other References**

- <u>http://www.oreillynet.com/lpt/a/4370</u>
- <u>http://aroundcny.com/technofile/texts/tec032104.html</u>
- <u>http://www.ee.unsw.edu.au/~taubman/seminars\_files/</u>
   <u>IEEE\_IEA\_J2K.pdf</u>
- <u>http://www.dsp.toronto.edu/~dsp/JPEG2000/JPEG20</u>
   <u>00\_51to100.pdf</u>