

JPEG 2000 as a PDS Archive Format: Introduction and Status

Working Group: Sue LaVoie, Elizabeth Rye, Brad Castalia, Patty Garcia, Steve Hughes, Chris Isbell, Ron Joyner, Myche McAuley, and Betty Sword

October 6, 2005

ل_

- What is JPEG 2000?
 - a compression scheme:
 - a raw image, when compressed using the JPEG 2000 compression algorithm, becomes a JPEG 2000 codestream (mime type: J2C)
 - and an image format:
 - the JPEG 2000 codestream, when encapsulated in the JPEG 2000 binary wrapper, becomes a JP2 formatted image (mime type: JP2)

JP2 file

JPEG 2000 Signature box

File Type box

JP2 Header box (superbox)

Image Header box

Bits Per Component box

Color Specification box

•••	
-----	--

	Color Specification box	
	Palette box	
	Component Mapping box	
	Channel Definition box	
	Resolution box (superbox)	
[Capture Resolution box	
	Default Display Resolution box	

Contiguous Codestream box (Compressed Image Data)

•••	
Contiguous Codestream box (Compressed Image Data)	
Intellectual Property Rights box	
XML boxes (Vendor Specific Meta Data)	
UUID boxes	
UUID Info boxes (superbox)	
UUID List box	
Data Entry URL box	

- What makes JPEG 2000 different from other compression algorithms?
 - The attainable compression ratios can be significanty better (cf. 3.8 for both 16-bit images using Zip compression):

	h0068_0000_s22.img		h0068_000)9_s22.img
Tile Size	16-bit	8-bit	16-bit	8-bit
1024	5.83	2.89	6.00	2.25
512	5.82	2.88	5.99	2.25
256	5.78	2.87	5.94	2.24
128	5.64	2.81	5.80	2.20

- The structure of the codestream is highly flexible. This enables selective decompression of:
 - different resolution "layers"
 - images of varying precision
 - portions (or "tiles") of the image
 - targeted regions of interest (ROIs)

- Why should we care about the JP2 format?
 - The J2C codestream is self-contained and contains sufficient information for a conforming software program to fully decompress the image data. However...
 - Without the JP2 header, a software program can't take advantage of the additional capabilities of the JPEG 2000 format.

- What impact does this have on the use of JPEG 2000 in PDS archives?
 - The working group is proposing that we permit data providers to provide data files in either J2C or JP2 format.

- What would a JPEG 2000 product label look like?
 - Because JP2 formatted files can contain intermingled header and image data, they are best considered as a single, compressed entity, rather than as a set of independently compressed objects. Thus, the combined detached labeling approach most accurately describes the file.

JPEG 2000 as a PDS Archive Format

PDS_VERSION_ID

= PDS3

(identification and descriptive data elements)

OBJECT	=	COMPRESSED_FILE
FILE_NAME	=	"filename.jp2"
RECORD_TYPE	=	UNDEFINED
ENCODING TYPE	=	"JP2"
ENCODING TYPE VERSION NAME	=	"ISO/IEC15444-1:2004"
INTERCHANGE FORMAT	=	BINARY
UNCOMPRESSED FILE NAME	=	"filename.img"
REQUIRED STORAGE BYTES	=	nnnn
^DESCRIPTION	=	"jp2 description.txt"
END_OBJECT	=	COMPRESSED_FILE
OBJECT	=	UNCOMPRESSED FILE
FILE NAME	=	"filename.img"
RECORD TYPE	=	FIXED LENGTH
RECORD BYTES	=	nnn —
FILE_RECORDS	=	nnn
/* POINTER TO DATA OBJECT */		
^IMAGE	=	"filename.img"
/* DATA OBJECT DEFINITION */		
OBJECT	=	IMAGE
LINES	=	nnn
LINE_SAMPLES	=	nnn
(etc.)		
END_OBJECT	=	IMAGE
END_OBJECT	=	UNCOMPRESSED_FILE
END		

- What other issues are there surrounding the JPEG 2000 compression format?
 - The JPEG 2000 specification permits both lossless and lossy compression.
 - We propose that the PDS should limit the use of this compression algorithm to lossless compression.

- Data conforming to part 1 of the JPEG
 2000 specification are available on a "royalty and license fee free" basis.
- Extensions to the format providing additional capabilities are described in other parts of the specification. These may require the payment of royalties or licensing fees.
- We propose that JPEG 2000 formatted data in the PDS be limited to the syntax and features defined in part 1 of the specification.

- What impact would acceptance of JPEG 2000 have on PDS tools?
 - Reference decompression software (including source code) is freely available in C and Java.
 - The Object Access Library would need to be updated to include these decompression algorithms.
 - NASAView would require some minor modifications.

• Summary:

- The JPEG 2000 compression algorithm is better at compressing data and has more flexibility than other compression algorithms.
- The JPEG 2000 specification is an ISO standard, and is therefore well documented. The PDS has a copy of that specification.
- Decompression algorithms and software are freely available and will be included in the archive.
- The Imaging Node is committed to ensuring that data will be validated for compliance with the JPEG 2000 specification.
- The compression algorithm, when limited to Part 1 of the spec., has no royalty or licensing issues.

Status

	Schedule:	Actual:
Informative presentation to Tech Session	08/31/05	08/31/05
SCR and StdRef update distributed to SCR WG for review	09/12/05	09/26/05
Present full draft of SCR to Tech Group	09/28/05	09/28/05
Informative presentation to MC	10/05/05	10/06/05
Tech Group vote on draft	10/26/05	10/03/05
Full SCR distributed to MC for their review	11/07/05	Sent to R. Beebe 10/04/05
MC vote on SCR	11/15/05	
Complete implementation into PSDD and StdRef	12/31/05	

Supplementary Material

- What precedents exist in the PDS for handling compressed data and data in non-PDS formats?
 - The precedents for compressed data can be broken down into two main categories:
 - data files containing distinct objects, some or all of which consist of compressed data
 - data files where the entire file is a single, compressed entity

- PDS archived, compressed data sets which consist of data files containing distinct objects are:
 - the Clementine image EDRs
 - the MGS MOC SDPs (essentially EDRs)
 - the Viking Orbiter image EDRs
 - the Voyager image EDRs

- The data products in each of these data sets have attached PDS labels which contain information describing both the compressed and the decompressed files within a single, implicit FILE object.
- In each case, the decompression software included in the archive produces a decompressed image file with an attached PDS label modified from the original label to describe only the decompressed file.

– An attached PDS Viking label for a compressed product:

CCSD3ZF000010000001NJPL3IF0PDS20	0000001 = SFDU_LABEL
/* FILE FORMAT AND LENGTH */	—
RECORD TYPE	= VARIABLE LENGTH
RECORD BYTES	= 1204
FILE RECORDS	= 2176
LABEL RECORDS	= 60
/* POINTERS TO START RECORDS OF	MAJOR OBJECTS IN FILE */
^IMAGE HISTOGRAM	= 61
^ENCODING_HISTOGRAM	= 62
^ENGINEERING TABLE	= 64
^LINE HEADER TABLE	= 65
^IMAGE	= 1121
/* IMAGE DESCRIPTION */	
OBJECT	= IMAGE
ENCODING_TYPE	= HUFFMAN_FIRST_DIFFERENCE
LINES	= 1056
LINE_SAMPLES	= 1204
SAMPLE_TYPE	= UNSIGNED_INTEGER
SAMPLE BITS	= 8
SAMPLE BIT MASK	= 2#1111110#
CHECKSUM	= 18081344
END_OBJECT	
END	

– An attached PDS Viking label for a decompressed product:

CCSD3ZF000010000001NJPL3IF0PDS2	00000001 = SFDU_LABEL
/* FILE FORMAT AND LENGTH */	_
RECORD_TYPE	= FIXED_LENGTH
RECORD_BYTES	= 1204
FILE_RECORDS	= 1115
LABEL_RECORDS	= 2
/* POINTERS TO START RECORDS OF	MAJOR OBJECTS IN FILE */
^IMAGE_HISTOGRAM	= 3
^ENGINEERING_TABLE	= 4
^LINE_HEADER_TABLE	= 5
^IMAGE	= 60
/* IMAGE DESCRIPTION */	
OBJECT	= IMAGE
LINES	= 1056
LINE_SAMPLES	= 1204
SAMPLE_TYPE	= UNSIGNED_INTEGER
SAMPLE_BITS	= 8
SAMPLE_BIT_MASK	= 2#1111110#
END_OBJECT	
END	

- PDS archived, compressed data sets which consist of data files treated as a single, compressed entity have, to date, exclusively used Zip compression. They are:
 - the MPF Rover Engineering data
 - the Cassini Radar LBDR data
 - the MER mobility reports
 - the HST Saturn Ring Plane Crossing supplementary data files

- A combined detached Cassini LBDR label:

```
PDS VERSION ID
                              = PDS3
/* PRODUCT DESCRIPTION */
                            = "CO-V/E/J/S-RADAR-3-LBDR-V1.0"
DATA SET ID
DATA SET NAME
                              = "CASSINI RADAR LONG BURST DATA RECORD"
. . .
 BJECT = COMPRESSED_FILE
FILE_NAME = "LBDR_02_003_V01.ZIP"
RECORD_TYPE = UNDEFINED
OBJECT
  ENCODING_TYPE = ZIP
 INTERCHANGE_FORMAT = BINARY
UNCOMPRESSED_FILE_NAME = "LBDR_02_003_V01.TAB"
REQUIRED_STORAGE_BYTES = 80994528
"COETTINEO_TX"
  ^DESCRIPTION
                              = "SOFTWARE/SOFTINFO.TXT"
                              = COMPRESSED FILE
END OBJECT
  BJECT = UNCOMPRESSED_FILE
FILE_NAME = "LBDR_02_003_V01.TAB"
RECORD_TYPE = FIXED_LENGTH
OBJECT
  RECORD BYTES = 132344
  FILE_RECORDS = 612
                 = 1
  LABEL RECORDS
/* POINTERS TO START RECORDS OF OBJECTS IN FILE */
^LBDR TABLE = ("LBDR 02 003 V01.TAB", 2)
```

. . .

- Non-PDS formats for data files which have been included in PDS archives are:
 - FITS images
 - ISIS images
 - ISIS qubes
 - VICAR images
- Data sets which include these formats have provided a combination of attached and detached labels to provide both the PDS and native format labeling information. Typically, the PDS label has been the detached label.