

Service Design

PDS 2010 System Review March 22-24, 2010

Sean Hardman

Topics

- Overview
- Design Decisions
- Services
- Wrap Up

Overview

- Currently focusing on phase I components (Registry, Harvest, Security and Report).
 - Have also started looking into Search.
- Use cases, requirements and design are captured in a single document for each service.
- Requirements (Level 4 and 5) derived from Level 3 requirements (where applicable), use cases and existing functionality in the current system.

Design Principles (Derived from Architectural Principles)

- Introduce common software, where appropriate, that is extensible to accommodate discipline-specific needs.
- Isolate technology choices from functionality to facilitate future upgrades.
- Minimize tight-coupling between components to facilitate phased deployment and component replacement.
- Simplify component and user interfaces to facilitate adoption and use of software.
- Utilize standard, open source and COTS solutions where appropriate.

Design Goals (Derived from PDS 2010 Drivers and Goals)

- Improve ingestion efficiency.
- Facilitate tracking and improve integrity of the archive.
- Facilitate data product search across nodes.
- Improve delivery of data to users and deep archive.
- Increase integration of software services across the Nodes and the system as a whole.
- Keep it simple.

Design Considerations

- Local governance for data and metadata within the PDS system is retained by the Discipline Nodes.
- Current and proposed data volumes along with limited bandwidth suggest that the system should eliminate unnecessary movement of data.
- Majority of effort undertaken with in-guide funding, dictates a flexible and phased approach for development and deployment of the system.

Technologies and Standards (Focus on Open Source Where Appropriate)

	User Interfaces: Web Browsers, Client Applications								
Cilent Layer	Technologies: Firefox, Safari, Internet Explorer, Java, Python								
	Standards: HTTP, FTP, WMS								
	Applications: Portais, Tools								
Presentation	Technologies: Web 2.0, AJAX, Java, JAXR, Python								
Layer	Standards: HTTP, REST. SOAP, XML								
	*								
Logic Layer	Services: Security, Harvest, Search, etc.								
	Technologies: Apache (HTTP Server, Tomcat, Lucene, Soir), Java, OpenLDAP, Globus (GridFTP)								
	Standards: HTTP, FTP, WMS, REST, SOAP, XML, XSD,								
	WADL, WSDL, JDBC, SQL, LDAP, ISO/IEC 11179, 60XML								
Resource Layer	Resources: CPUs, File Systems, Data Stores, Network								
	Technologies: UNIX, Windows, NAS, RAID, DBMS, Gigabit Ethernet Standards: TCP/IP, UDP								

- Overview
- Design Decisions
- Services
- Wrap Up

Design Decisions

- Service Interfaces
 - Implement REST-based interfaces where appropriate.
- Grammar Representation
 - Adopt XML as the data language/grammar where appropriate.

Service Interfaces REST vs. SOAP

- REST is generally considered lightweight and simpler to implement than SOAP.
- Where web-based service interfaces are planned, a REST-based interface will be implemented.
 - REST stands for Representational State Transfer and is a style of software architecture based on HTTP.
 - This decision applies to the Registry and Search services.
- Other services that integrate COTS or open source solutions will utilize their provided interfaces (e.g., LDAP).

Grammar Representation XML vs. ODL

- XML has been adopted by a number of science data and archive systems for capturing metadata.
- XML offers a larger community and a stable standard to build on for the future.
- The long-term benefits in cost reduction for development and maintenance outweigh initial transition costs.
- Although no official survey has been performed, it is believed that data providers and consumers would applaud the move to XML.

- Overview
- Design Decisions
- Services
- Wrap Up

Registry Service

Overview

- The design for PDS 2010 calls for multiple registries that are distinguished by their content.
 - These are the Inventory, Dictionary, Document and Service instances.
- The Registry service provides a common implementation for each of these services.
- Design based on the CCSDS effort:
 - Registry and Repository Reference Model, Draft White Book.
- The CCDSD effort leverages the ebXML standard.

Context

March 22-24, 2010

Detailed Context

Service Design

Registry Entry Types

- Metadata Entry
 - Captures a description of a non-digital object.
 - Examples include missions, instruments, etc.
- Digital Object Entry
 - Captures a description of a digital object that is referenced by an URI.
 - Examples include products, product label schemas, etc.
- Relationship Entry
 - Captures an association between registered objects.
 - Associations are also typed (e.g., member of).

Use Cases (Taken from CCSDS Specification)

Architecture (Stand-Alone Registry Capabilities)

Architecture (Deployment Scenarios)

March 22-24, 2010

Analysis

- Initially looked at related standards (UDDI and ebXML) and determined that ebXML better supports federated registries.
- Evaluated two software packages:
 - freebXML
 - Open Source package no longer maintained
 - Would require further development and upgrade
 - WellGEO RegRep from Wellfleet Software Corporation
 - COTS package developed by the main author of freebXML
 - Met requirements but not mature and exceeded budget constraints
- After these two evaluations, the team decided to implement the CCSDS reference model.

Implementation

- Currently implementing the REST-based registry interface with these characteristics:
 - A URL assigned to every resource
 - Formulate URLs in a predictable manner
 - Use HTTP methods for actions on a resource (GET, POST, PUT and DELETE)
 - Leverage HTTP protocol headers and response codes where applicable
- Goals include:
 - Keep the service simple and refrain from adding too much functionality
 - Allow messaging in the form of XML or JavaScript Object Notation (JSON)
 - Allow for extensibility as new types of artifacts are defined

Implementation Examples

• This interface delegates all functions involving an artifact.

http://pds.nasa.gov/services/registry/artifacts/

- <u>GET</u>: Retrieves a paged list of artifacts from the registry.
- <u>POST</u>: Publishes an artifact to the registry.
- This interface acts on a specific artifact: http://pds.nasa.gov/services/registry/artifacts/{version}/{lid}/
 - <u>GET</u>: Retrieves an artifact from the registry.
 - <u>PUT</u>: Updates the artifact in the registry with the given artifact.

Harvest Tool

Overview

- Provides functionality for capturing and registering product metadata.
- Crawler-based tool configurable to support PDS3 and PDS4 archive directory structures.
- Designed to integrate well with existing Node operations.
- Provides the first line of metadata harvesting within the system in order to facilitate tracking of and access to products.

Context

(Infrastructure Component Limited to Internal Interfaces)

March 22-24, 2010

Use Cases

Architecture

Implementation

- The tool offers a command-line interface and supports execution from a scheduler application (e.g., cron).
- Plan to investigate two operational crawlerbased implementations from JPL as a starting point for this tool. They come from:
 - Physical Oceanography Distributed Active Archive Center (PO.DAAC)
 - Orbiting Carbon Observatory (OCO) / NPP Sounder PEATE

Security Service

Overview

- Provides the authentication and authorization functions for the system.
- Control access to interfaces and services (e.g., Monitor, Report, Registry instances etc.).
- Also supports for the phone book (personnel directory) capability.
- Looking to satisfy the requirements with Open Source software supporting the Lightweight Directory Access Protocol (LDAP).
 - Using Sun's Open Single Sign-On (OpenSSO) package

Context

(Infrastructure Component Limited to Internal Interfaces)

March 22-24, 2010

Use Cases

Architecture (Support for Three Controlled Access Scenarios)

Service Design

Implementation

- As previously mentioned, OpenSSO and OpenDS from Sun have been selected.
 - OpenDS is a directory service from Sun based on the LDAP standard.
- We have installed the software on a couple of platforms and have tested the demonstration.
 - Currently integrating with the Registry service interface.
- The next step is to finalize the associated data model and populate from the current phonebook for further testing.

Report Service

Overview

- Provides functionality for capturing and reporting metrics.
- Not limited to metrics generated by PDS 2010 services.
 - Includes metrics from the FTP and web logs from the Nodes.
 - As well as any other commonly generated metric.
- Looking to satisfy the requirements with a COTS package.

Context

March 22-24, 2010

Use Cases

Architecture

March 22-24, 2010

Implementation

 Plan to evaluate a couple of commercial software packages based on the service requirements.

Search Service

Overview

- This service is a deployable component that accepts queries for data and returns a set of matching results.
- Provides the public interface to the metadata contained in the federated registries.
- Provides the second line of metadata harvesting within the system in order to facilitate discovery of products.
- Generation of search indices from registry metadata supports multiple query formats and is tailor-able for customized search interfaces.

Supported Query Formats

- Open
 - This is most commonly referred to as a Google-like search or text-based search.
 - User provides a sequence of textual terms that the service matches against its search indices.
- Guided
 - Known as faceted search and is highly interactive.
 - Presents a series of high-level organizational categories along with a set of terms in each category.
 - Enables customized narrowing of matching results through user-selected progressive disclosure.

Supported Query Formats (cont)

- Constrained
 - Referred to as form-based search allowing the user to specify query criteria from a defined set of constraints.
 - Requires intimate knowledge of the constraints and is targeted towards the expert user.
- Exploratory
 - This query format begins with the query results instead of a query expression.
 - Enables the user to find interesting data that's "nearby" in terms of time, space, or other relative measure.

Context

March 22-24, 2010

Use Cases

March 22-24, 2010

Architecture (Stand-Alone Search Capabilities)

March 22-24, 2010

Architecture (Deployment Scenarios)

March 22-24, 2010

Analysis/Implementation

- Beyond desiring a REST-based interface and support for IPDA's PDAP query protocol, the design for this service has just started.
- It is anticipated that technologies such as Lucene and Solr will be utilized in the development of the service.

- Overview
- Design Decisions
- Services
- Wrap Up

Wrap Up

- Continue to work out the details for each service with periodic design reviews by the System Design Working Group.
- Design material posted to the PDS Engineering Node web site and made available to the PDS Technical Staff for review as well.
- Initiate implementation/integration for each of the core services.

Schedule - Projects 2 and 4

	Duration (Work Days)	Start Date	Finish Date	2008		2009				2010				2011				2012		
Activity Name				3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd
Concept/Study Phase		8/20/07	7/18/08	•			1								12				1	
Project Planning		1/7/08	7/9/08	•	1					1				1			1	1		
Architecture/System Engineering		7/10/08	6/30/09	decrime.	-	-			1			1		-	1				1	-
Projects	911.00	11/21/08	5/18/12		-	-	-	-	-		-	-	-	-		-	-	-	-	
P1. Data Standards Project		1/2/09	9/30/10		1	-		-	-				•	-	1	1			1	
P2. Distributed Infrastructure Project	911.00	11/21/08	5/18/12		-	_	a	-	-	-	-	-	-	-	-	_	-	-		
Implementation Plan	20.00	1/5/09	1/30/09	1		-	1								1				1	
Technologies and Standards Identification	140.00	11/21/08	6/4/09							1			1	1			1	1		
Phase I (Security, Report, Registries)	270.00	2/9/09	2/19/10	1		-		-	-		1	1		-	1				1	
Phase II (Registries, Dictionary, Service)	215.00	10/26/09	8/20/10		1		1		-		-	-		1			1			
Phase III (Search)	155.00	6/7/10	1/7/11	1			1	1					-	•	1				1	
Phase IV (Storage)	165.00	10/3/11	5/18/12		1		1		1	1					1	1	-	-	-	
P3. Tools Project	595.00	11/16/09	2/24/12	1			1	1	-	-	-				-	-		-		
P4. Distributed Catalog System Project	688.00	9/30/09	5/18/12		1				-	-	-		-	-		-	-	-	-	
Implementation Plan	15.00	9/30/ <mark>0</mark> 9	10/20/09				1	1	1					1	1				1.	
Requirements	53.00	10/21/09	1/1/10		1		1					1	1		1		1	1		
Phase I (Inventory, Document, Harvest)	325.00	1/4/10	4/1/11	1			1		1	-		-		-	1				1.	
Phase II (Ingest)	120.00	12/5/11	5/18/12		1					1		1	1		1			-		
P5. Portals, Search and Distribution Project	425.00	10/4/10	5/18/12	1.			1.	1			1		-	_			-	_		
P6. Data Movement and Delivery Project	171.00	10/1/10	5/27/11		1								-	-	-		1	-		
Builds	690.00	11/9/09	6/29/12		1	1	1		-	-		-	-	-	-	-	-	-	-	
BO. Infrastructure Build	20.00	11/9/09	12/4/09			1	-		-			1 1	1	1	1	<u></u>	1	1	-	-
B1. Ingestion Build	160.00	3/22/10	10/29/10			1	1				-	-	-	1	1		1	1		
B2. Distribution Build	157.00	2/24/11	9/30/11		1	1	-		1	1	-		1	-		-	•	1		-
B3. User Capabilities Build	30.00	5/21/12	6/29/12												1				-	•
				3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd

March 22-24, 2010

Questions/Comments