PDS Search Services

Distributed Infrastructure Design Team
June 3, 2009

Overview

This document provides a description of several representative search systems within the
Planetary Data System (PDS). Itis intended to provide background information to assist in
the design of the PDS 2010 search service architecture.

Engineering Node Search

The PDS has a central high-level catalog or "data search" database that is used to select data
sets based on a set of global metadata parameters (e.g. target, mission, instrument, data
type). There are several JSP forms-based interfaces to what is called the “catalog profile
server” [which accesses the Sybase catalog database]. This catalog is built by the
engineering node staff from metadata supplied by the discipline nodes. A full-text search
capability is also provided using Solr and Lucene to index the catalog database and a
separate file that describes the search tools at the discipline nodes. The search systems
provide a list of data sets with links to data set search systems at the discipline nodes or to
locations where the data set volumes can be perused.

Planetary Image Atlas Il

The Planetary Image Atlas II (PIA) is a search and retrieval tool for planetary images. The
Atlas web service is a demon server that maintains in memory all mission configurations
and is accessed to provide mission specific or multi-mission views of the configuration.
The Atlas client provides the view request when first accessed by the user. A subset of the
configuration is then used by the server to perform transactional queries from the client.
The configuration file is used to build all the search menu screens and to provide all
relevant database locations and protocol specifications as well as schema mapping,
searchable parameters and returnable parameters. The user interface provides tabs for
Intro[duction] to Atlas, QuickSearch, Product Search, Geometry Search, Instrument Search,
Feature Search, Time Search, Map Search (with text search) and a search results page.
Atlas Il is deployed on multiple servers running Red Hat Linux. It is a three-tiered
architecture with a presentation layer, core layer and back-end layer. The presentation
layer uses the Google Web Toolkit (GWT), AJAX and RPC as a bridge between the GWT AJAX
client to the Glassfish SOAP JAXWS 2.0 server.

The user interface provides tabbed input screens for search categories that vary by mission
and instrument. It also provides a text based search suggest box that pops up suggested



keywords and values when text is entered. This will be expanded to integrate the USGS
gazetteer for feature name searches. Google Maps is used to provide a map-based
geographic selection screen. The core layer includes three web services: atlasservice,
which performs searches based on user input to the search screens; atlascartservice for
ordering and downloading data; and atlasingestservice for updating Atlas metadata. The
atlassearch service translates user input into either OODT DIS or SQL query and sends it off
for execution using either JDBC, OODT webgrid servers or Tomcat DBCP for accessing the
MySQL and PostGres servers with connection pooling. It then combines the results and
presents them to the user. Atlas allows for downloading of products using an OODT
product server, wget scripting, or FEI for bulk downloads. The backend layer includes
metadata and data storage components. These include a MySQL database for the image
node inventory; PostgreSQL database for Unified Planetary Coordinate (UPC) database
access; Distributed OODT profile servers and distributed OODT product servers. A big
issue is trying to understand the semantically different interpretations of keywords from
mission to mission and trying to unify the queries across missions is very difficult.

Orbital Data Explorer (ODE).

The ODE system was initially designed to provide integrated access to multiple Mars
Reconnaissance Orbiter instrument product collections. This capability has been extended
to add data from other Mars missions and instruments. Subsequently a separate Mercury
ODE has been released to support Messenger data access and a Lunar ODE is planned. The
major ODE system components include the web interface, ODE metadata database, the
backend processor (Bunter). Other components include the Geosciences Common
Subsystem library and the data archives, which are not part of ODE. The system software is
developed with commercial software tools including Microsoft Visual Studio 2008 (IDE and
C#), SQL Server Management Studio and Visual SourceSafe software management system.
The web interface uses ASP.NET, ASP.NET AJAX, HTML, Javascript, ESRI ArcGIS Web ADF,
MS SQL 2005, and internally developed Geosciences DLL files. The web site is hosted on
MS Internet Information Services 6.0 with .Net framework 2.0, ASP.NET 2.0 AJAX
Extensions 1.0 and ArcGIS Server Web ADF Runtime for Microsoft .Net framework. Code is
written in ASP (Active Server Pages) and C#.

The main components of the ODE web interface include the Home page, Data Product
Search, Tools links, Data Set volume browser, Download system and Help system including
user forum. Product Search requires selection of data sets to search, followed by additional
filtering, on product id, product center location and time range. Results can be provided in
a tabular listing with browse renditions or their locations plotted on a map display. Results
can be selected for inclusion in the user "shopping cart" on the tabular listing. The user
can click on selected products and have browse versions displayed in a Zoomifyer frame,
which can also display metadata, labels or related products. Having the results plotted on
the map display allows the user to graphically select a subset of products before returning
to the tabular display. The Tools menu includes a link to a special data product search for
coordinated observations, a link to a search page for a Mola PEDR query and a link to
information about displaying observation footprints with Google Earth/Mars. The Data Set



Browser tab provides a volume browser, which can access a local file system, or remote
data either on an http server, ftp server or PDS-D server (this is being phased out). The
Download option allows products to be viewed in the browser or to be packaged for bulk
downloading at a later time. The user can select to have ancillary files included in the
package.

The ODE metadata database holds metadata for an ODE instance. The database
components include an sql relational database, extended labels, browse data, thumbnails,
zoomifyer files, map files, geographical names and configuration files. The database is
accessed by sql queries or C# access classes. The database is built using the backend
processor, Bunter (written in C#) which uses a set of configuration files which provide the
location and mechanisms for accessing its sources of data and metadata. The metadata
database is built by scanning the product labels from the source data sets. A major issue is
adapting the system to the many variations of PDS products developed by different data
producers ("Processing products from different datasets, different eras, different nodes,
different producers can be very challenging".)

Rings Multi-mission Search

“The Rings Node Multi-mission search system (description provided by Mark Showalter) is
hosted on a Mac Xserve and implemented with MySQL, AJAX, PHP. The search consists of
SQL tables with a common primary key corresponding to an "observation". An
observation might encompass several related products (such as raw and calibrated
versions of the same image). Every table contains a particular set of parameters that you
might want to constrain, corresponding to one (or sometimes two) tabs on the query form.
For example, one table contains general parameters, one contains Cassini-specific
parameters, one contains image-specific parameters, and one contains Cassini ISS-specific
parameters. The general table contains a record for every observation in our database; the
Cassini table contains a record for every observation from Cassini (whether ISS, CIRS, VIMS,
etc.); the image table contains a record for every image in our database (whether Cassini,
Voyager, Hubble, etc.). Each time the search is narrowed down, the engine performs a
query on the general table, and then (for example) determines which missions are
represented in the list returned. If the list returned only contains observations from one
mission, e.g., Cassini, then the Cassini tab appears. If only images are represented, then the
image tab appears. A separate trigger table lists the conditions that must be satisfied for
each particular tab to appear. The net result of all of this is a kind of multiple inheritance.
Adding a new data set entails populating each of the existing tables with the relevant
information. Any parameters left over, which are specific to that particular data set, go into
their own new table. Then the trigger table is updated to describe when those parameters
should appear, which is basically when a search has been narrowed down to observations
that only reside in that data set. Once the user requests results, the system does a query on
a separate table of data products to determine what files are associated with each
"observation". This makes it possible for an observation to comprise multiple products, and
also for a product to contain multiple observations. Note that the forms themselves are
also generated using queries on the tables. For example, if we add a new mission "New



Horizons" and a new instrument "LORRI" to the general table, then these options will
immediately appear the next time any user loads the general form. Data ingestion is done
using Perl scripts, which are customized for each dataset to be ingested.



