

Data Providers’ Handbook
Archiving Guide to the PDS4 Data

Standards

Data Design Working Group
October 2010

Version 0.22.3

PDS4 Data Providers Handbook

1

CHANGE LOG

Revision Date Description Author

0.1 Mar 30, 2009 Initial draft based on information collected by
the Data System Working Group.

R.Joyner

0.2 Aug 6, 2009 Updated versions of all Classes R. Joyner

0.2.1 2010-08-31 Complete overhaul, but only partly successful
through page 25

R. Simpson

0.22 Aug 31, 2010 Integrate Simpson and Joyner docs R. Joyner etal

0.22.1 2010-09-22 Edits through Chapter 3, except Chapter 2 Simpson

0.22.2 2010-09-24 Added comments from Mitch Gordson Simpson

0.22.2 2010-10-01 Significant edits to Chapter 4 Simpson

0.22.3 2010-10-25 Significant edits to Chapters 1,3-6 Simpson

LIEN LOG

Revision Date Description
0.22 Sept 13, 2010 1. XML labels in Section 7 need to be updated

2. Organization of sections needs help
3. Parsable Byte Stream vs Unencoded Stream

Base
4. Collection_Archive vs Archive_Collection
5. Bundle_Archive vs Archive_Bundle
6. Example logical_IDs need to conform to rules
7. Examples need to be loaded into repository and

find permanent location for repository
8. Table of Association_types needs work
9. Should be some mention of APG (workflow)
10. Need to add section on context products and

where to locate
11. Add section on Node_Area and Mission_Area

0.22.1-0.22.2 2010-09-22/24 Anything of the form [Note for later: …]

PDS4 Data Providers Handbook

2

TABLE OF CONTENTS

1.0 INTRODUCTION..4

1.1 Purpose ..4
1.2 Audience...4
1.3 Document Scope ..4
1.4 Document Overview ...5

1.4.1 Document Outline..5
1.4.2 Document Notation..5

1.5 Applicable Documents ..6
1.5.1 Controlling Document ..6
1.5.2 Reference Documents...6

1.6 The PDS 2010 Project ..7
2.0 KEY PDS4 CONCEPTS / IMPLEMENTATIONS..8

2.1 PDS3 Volume Organization and Naming..8
2.1.1 PDS3 Implementation..8
2.1.2 PDS4 Implementation..9

2.2 PDS3 Data Set/Data Set Collection Organization and Naming10
2.2.1 PDS3 Implementation..10
2.2.2 PDS4 Implementation..11

2.3 PDS3 Data Product Labels and Object Description Language (ODL) ..11
2.3.1 PDS3 Implementation..11
2.3.2 PDS4 Implementation..12

2.4 PDS3 Data Objects and Pointers ...12
2.4.1 PDS3 Implementation..12
2.4.2 PDS4 Implementation..13

2.5 PDS3 Record Formats..13
2.5.1 PDS3 Implementation..13
2.5.2 PDS4 Implementation..13

2.6 PDS3 Representation of Data Formats ..14
2.7 PDS3 Representation of Data Types..15
2.8 PDS3 File Record Structure ...16
2.9 PDS3 Usage of N/A, UNK, and NULL ..17

3.0 PDS4 CONCEPTS AND BUILDING BLOCKS...18
3.1 PDS4 Building Blocks – The Primary Pieces..18

3.1.1 PDS4 Base Storage Structures ...18
3.1.2 Attributes, Class, and Association ...19
3.1.3 Object ..20
3.1.4 Object Description ...20
3.1.5 Tagged Object...25
3.1.6 Product ..26
3.1.7 Collection...29
3.1.8 Bundle ...30

3.2 The PDS Registry...32
3.2.1 Registry Use of Identification XML Elements.................................32

PDS4 Data Providers Handbook

3

3.2.2 Registry Use of Cross Reference XML Elements..........................32
3.3 Miscellaneous Label Topics..34

3.3.1 Elusive Values...34
3.3.2 Cardinality ...36

4.0 ASSEMBLING A BUNDLE...38
4.1 Structure of the Bundle ...38

4.1.1 Bundle Product ..39
4.1.2 Browse Collections and Directories...40
4.1.3 Calibration Collections and Directories..41
4.1.4 Context Collection and Directory ...41
4.1.5 Data Collections and Directories ...42
4.1.6 Document Collections and Directory ...42
4.1.7 Gazetteer Collection and Directory..43
4.1.8 Geometry Collection and Directory..43
4.1.9 SPICE Collection and Directory...44
4.1.10 XML_Schema Collection and Directory ...44
4.1.11 Miscellaneous Collections and Directories45

4.2 Assembling the Collections...45
5.0 PDS4 DATA REPRESENTATION ...46

5.1 PDS4 Data Structures ..47
5.2 PDS4 Data Product Description ...49

6.0 PDS4 PRODUCT LABEL SCHEMA...50
6.1 Restrictions in Tailoring Schemas ..52
6.2 Building and Using Local Data Dictionaries ..52
6.3 Example of Relationship of Schemas to Labels....................................52
6.4 Validating the Relationship of Schemas and Labels.............................54

7.0 PDS4 DATA PRODUCT GENERATION..57
8.0 EXAMPLE PDS4 PRODUCTS...58

APPENDIX A ACRONYMS...60
APPENDIX B DEFINITION OF TERMS..61

PDS4 Data Providers Handbook

4

1.0 INTRODUCTION

1.1 Purpose

The Data Providers Handbook (DPH) is a guide for preparation of data being
submitted to the Planetary Data System (PDS). The document should be used in
conjunction with the PDS Standards Reference (PDSSR) [2] and the Planetary
Science Data Dictionary (PSDD) [3]. All three documents have been updated for
version 4 of the PDS (PDS4)1.

While, the PDS4 Standards Reference remains the definitive source for ensuring
data meet the PDS4 archive criteria, the DPH functions more in the capacity of a
tutor/coach to provide information and examples to guide data providers in the
design and preparation of data to be archived with the PDS

1.2 Audience

The DPH is written for scientists and engineers in the planetary science
community who are planning to submit new or restored data to PDS4 (data
providers). While the document is applicable to all such submissions, most of the
examples and discussions are presented in a mission/instrument context.

1.3 Document Scope

The DPH introduces the concepts and building blocks around which PDS4 has
been designed. It provides instruction on how those building blocks can be
constructed in real-life situations and how the simple structures can be
assembled into larger aggregations.

PDS4 is built around a very small number of basic data structures; those will be
illustrated and a few examples of how they can be extended will be given. But
the goal of the DPH is to help the archivist develop basic PDS4 skills rather than
to explore the system’s flexibility and many possible options. More advanced
topics are discussed in [4].

Careful absorption of the DPH coupled with practice should put the reader in a
position where s/he can create products from a planetary science instrument and
assemble them into a PDS4-compliant archive.

1 See Appendix A for acronyms and abbreviations. See Section 1.5 for a list of
applicable documents.

PDS4 Data Providers Handbook

5

1.4 Document Overview

PDS4 represents a departure from previous versions of the Planetary Data
System. Although it is still an archive of planetary data, it has been designed
using contemporary information technology concepts and tools. The system is
built around a ‘data model’ that rigorously defines each of its components and the
relationships among them. There are only four fundamental data structures, but
many extensions are possible — each also rigorously defined. By carefully
controlling product definitions and relationships, PDS can accurately track the
progress of each product entering the system, compute detailed inventories of
holdings, design sophisticated services that users can request to act on subsets
of the archive (such as transformations and displays in addition to the expected
search and retrieval functions), and connect data products to relevant internal
and external information (documentation).

1.4.1 Document Outline

Section 3 of the DPH introduces PDS4 concepts and building blocks and the
structures into which they can be assembled. Included is an overview of the
PDS4 ‘label’; labels are written in XML, which is also introduced. Section 4
explains how to assemble a bundle …

1.4.2 Document Notation

Notation and terminology in the DPH are consistent with that used in other PDS4
documents [2-4]. Toward that end, a common glossary has been developed
(Appendix B).

Rectangular boxes in figures enclose entities and terms that are consistent
across PDS. Labeling outside such boxes is not rigorously controlled; readers
should be alert to the possibility that such labeling will be different in other
documents or in other sections of this document.

PDS4 Data Providers Handbook

6

To simplify labeling some figures may use abbreviations. For example <logical
identifier> may appear where <logical identifier>content</logical identifier> is the
fully expanded XML element (Section 3.1.4.2).

1.5 Applicable Documents

1.5.1 Controlling Document

[1] Planetary Data System (PDS) PDS4 Information Model Specification, Version

0.1.1.1.c

1.5.2 Reference Documents

[2] Planetary Data System Standards Reference, October 2010, Version 4.0.0,

JPL D-7669, Part 2

[3] Planetary Science Data Dictionary Document, October 2010, JPL D-7116

Rev. X.

[4] J.S. Hughes, et al., Advanced Topics in PDS4, TBW.

[5] PDS4 XML Tutorial, TBW.

PDS4 Data Providers Handbook

7

1.6 The PDS 2010 Project

PDS 2010 is a multi-year project to develop and deploy a major modernization of
the entire PDS archive and distribution system. The result is referred to as PDS
version 4, or simply, PDS4.

This document provides information to assist data providers in the preparation of
data for archiving under the PDS4 standards. In previous versions, the Standards
Reference included substantial ancillary and tutorial information. Under PDS4 the
Standards Reference remains the definitive source for PDS archiving, but the
document is designed strictly as a reference. Tutorial information is provided in
this and other documents.

Goals of PDS4 include:

• improved efficiency and reduced costs in the data submission process,
• increased robustness and integrity of data in the archive,
• simplied location and retrieval of data from the archive,
• enhanced value added services to end users.

Key principles underlying the development of PDS4 are:

• Data visualization and analysis software change frequently. Formats
optimized for such software generally are not optimal for archiving.

Conversely, data structures optimized for archiving should be simple,
rigidly controlled, and projected to be stable for extended periods.
Such structures are, in general, less convenient for data visualization
and analysis.

• Documents and software in the archive should be handled in the same

ways as data are handled.

• The system should identify, locate, and retrieve individual products and
identify all associated meta-information and products.

• There should be a few highly constrained, simple data structures which

will be stable for decades, allowing development of sophisticated and
powerful services and analysis tools.

• Services will include transformations among internally recognized

formats and transformations from internal formats to popular formats
used by contemporary users.

PDS4 Data Providers Handbook

8

2.0 KEY PDS4 CONCEPTS / IMPLEMENTATIONS

This section describes key PDS3 concepts/implementations that have been
updated as part of the evolution of PDS3 into PDS4. This section is intended to
guide those familiar with PDS3 through a transition of the PDS3 concepts to the
parallel concepts embodied in PDS4. Although significant areas of PDS3 were
restructured, this section only addresses those areas that are thought to be key
to a clear understanding of the parallels/differences between PDS3 and PDS4.

2.1 PDS3 Volume Organization and Naming

2.1.1 PDS3 Implementation

Under PDS3, the Volume Organization and Naming Standard defined the
organization of data sets onto physical media and the conventions for forming
volume names and identifiers. A PDS3 volume was one unit of a physical
medium such as a CD, a DVD, or a magnetic tape. Data sets could reside on one
or more volumes and multiple data sets may also be stored on a single volume.
Volumes were grouped into volume sets.

Each PDS3 volume had a directory structure containing subdirectories and files.
Both random access (CD, DVD) and sequential access (magnetic tape) media
were supported. A PDS3 volume on a sequential access medium had a virtual
directory structure defined in the VOLUME object included in the file
“VOLDESC.CAT”.

Under PDS3, volumes had one of four defined structures:

1. one dataset on one volume
2. one data set on many volumes
3. many data sets on one volume
4. many data sets on many volumes

Each of the above structures had a set of recommendations; for example:
1. A root directory which was the top-level directory of a volume.
2. Required and optional files at the root directory.
3. Required and optional subdirectories each of which contains required and

optional files.

Figure 2-1 depicts the PDS3 volume organization for one data set and one
volume.

PDS4 Data Providers Handbook

9

Figure 2-1. Volume Set Organization Standard - One Data Set, One Volume

2.1.2 PDS4 Implementation

Under PDS4, the concept of a Volume has been deprecated. However, the
concept of Organization and Naming Standards has been somewhat retained but
under the guise of a new concept --- an Archive Bundle.

An Archive Bundle can only describe the equivalent of the “PDS3 One Data Set,
One Volume” (i.e., the other PDS3 volume structures are no longer supported
under PDS4).

An Archive Bundle is a manifest of collections of products. The structure of an
Archive Bundle somewhat parallels the PDS volume structure where there are
both required and optional files and subdirectories at the root level, and required
and optional files within subdirectories. Figure 2-2 depicts an abbreviated
organization of an Archive Bundle.

PDS4 Data Providers Handbook

10

Figure 2-2. PDS4 Archive Bundle Abbreviated Structure

Under PDS4, some of the files and directories that were part of a PDS3 volume
structure have been deprecated. A few examples include VOLDESC.CAT, the
CATALOG directory, and all of the INFO files (e.g., CATINFO.TXT,
DOCINFO.TXT, etc). PDS4 has also added some new directories. For
example, the CONTEXT directory and the SCHEMA directory are newly required
as part of an Archive Bundle.

More on the specifics of an Archive Bundle and the relationship to collections is
presented later in this document.

2.2 PDS3 Data Set/Data Set Collection Organization and Naming

2.2.1 PDS3 Implementation

Under PDS3, the Data Set/Data Set Collection Contents and Naming Standard
defined the conventions for maintaining consistency in the contents, organization
and naming of archive quality data sets. Data Sets were defined in terms of an
aggregation of data products with a common origin, history, or application. A data
set included primary (observational) data plus the ancillary data, software, and
documentation needed to understand and use the observations. Files in a data

PDS4 Data Providers Handbook

11

set shared a unique data set name, shared a unique data set identifier, and were
described by a single DATA_SET catalog object (or equivalent).

Data Set Collections were defined in terms of data sets. A data set collection was
defined in terms of an aggregation of several data sets that were related by
observation type, discipline, target, or time which were to be treated as a unit;
that is, they were intended to be archived and distributed together. Data sets in a
data set collection shared a unique data set collection name, shared a unique
data set collection identifier, and were described by a single
DATA_SET_COLLECTION object (or equivalent).

One of the primary considerations in creating a data set collection was that the
collection as a whole provided more utility than the sum of the utilities of the
individual data sets.

2.2.2 PDS4 Implementation

Under PDS4, the concepts of Data Set and Data Set Collection have been
deprecated. However, the concept of the Organization and Naming Standards
has been retained.

PDS4 has put considerable effort into defining the conventions for maintaining
consistency in the contents, organization and naming of archive quality mission
data. The organization of the data has been defined in terms of an aggregation of
like-products having a common origin, history, or application – an Archive
Bundle.

The Archive Bundle is comprised of collections of primary (observational) data
plus the ancillary data and documentation collections required for understanding
and using the observations. One of the primary considerations in creating an
Archive Bundle is that the collection as a whole provided more utility than the
sum of the utilities of the individual products.

Collections are defined as an aggregation of products that are related by like-
type (e.g., collections of browse products, collections of document products,
collections or calibration products, etc).

2.3 PDS3 Data Product Labels and Object Description Language (ODL)

2.3.1 PDS3 Implementation

Under PDS3, the Data Product Labels Standard addressed PDS3 data product
labels and how the PDS3 labels were required to describe the contents and

PDS4 Data Providers Handbook

12

format of each individual data product within a PDS3 data set. PDS3 data
product labels were written in the Object Description Language (ODL) in
accordance with the Object Description Language Specification Standard.

Under PDS3, PDS required a distinct data product label for each individual data
product file. These distinct product labels were to be constructed in one of three
ways:

• Attached
• Detached
• Combined Detached.

PDS3 also recommended that labels have line lengths of at most 80 characters
(including <CR><LF> line terminators) with the carriage return and line feed
(CR/LF) pair being the required line terminators for all PDS labels.

2.3.2 PDS4 Implementation

Under PDS4, the concept of the Object Description Language Specification
Standard has been deprecated and ODL has been replaced with the more
current industry standard of XML.

PDS4 has consolidated the construction of product labels to only allow for a label
that is detached from the data file (i.e., the concept of an attached label is
verboten under PDS4). And PDS4 has pretty much done away with the concept
of prescribed line lengths; except, within the constraints dictated by XML.

2.4 PDS3 Data Objects and Pointers

2.4.1 PDS3 Implementation

Under PDS3, the Pointer Usage Standard addressed how Pointers are used
within PDS labels to indicate the relative locations of objects in the same file and
to reference external files. The value part of the pointer statement indicated the
location of the referenced information in the data file. There were three main
categories of pointers in PDS3:

• Data location pointers,
• Include pointers, and
• Related information pointers.

PDS3 pretty much required that both the PDS3 label and the files referenced by
the label had to be co-located within the same directory. However, where the
files couldn’t be co-located, PDS3 had a set of rules for resolving pointer

PDS4 Data Providers Handbook

13

references to external files (i.e., ^CATALOG referenced files in the CATALOG
directory).

2.4.2 PDS4 Implementation

Under PDS4, the concept of the Pointer Usage Standard has been entirely
deprecated in favor of a more centralized Data Location concept where there are
no “implicit rules” for where files are located as the relative locations of the
referenced files are explicitely defined. The PDS4 Data Location concept
provides a mechanism whereby both a directory path and a file name are
explicitely named so that the files referenced by the label need not be co-located.

2.5 PDS3 Record Formats

2.5.1 PDS3 Implementation

Under PDS3, the Record Formats Standard addressed how the choice of a
proper record format for a data file is influenced by a number of factors. And
eventhough PDS3 strongly recommended a record format of fixed-length or
stream be used whenever possible, PDS3 also provided an alternative,
UNDEFINED record type. This alternative, although strongly discouraged under
PDS3, proved to be an open door to data providers to create PDS3 products
having no specific record structure (i.e., no record terminators are recognized
and no record length is implied; the data are taken to be a continuous stream of
potentially unparseable bytes).

The above was a side effect of PDS3 allowing Combined Detached labels where
the referenced data files had different record formats (e.g., file-A had a fixed-
length record structure and file-B had a stream record structure). As the label
attempted to describe the record formats of both files using a single
“record_format = xxx” specification, the only available option was to identify the
record format as a collective UNDEFINED.

2.5.2 PDS4 Implementation

Under PDS4, the concept of an UNDEFINED record format has been
deprecated. The record format of each file referenced within a PDS4 label is
explicitely defined and so a mixture of potentially conflicting record formats is not
an issue under PDS4.

An adjunct to the above, was that PDS4 has made the decision to require data
products to have a homogenous record structure (i.e., data products may not

PDS4 Data Providers Handbook

14

have a record structure where the rows or records are inter-leaved across types
of products).

Under PDS4, the above example would be decomposed into three separate files
where each would have a homogenous record structure.

A second possibility would be to combine the HEADER and TABLE products in
such a way that both products share identical record structures.

2.6 PDS3 Representation of Data Formats

PDS4 data file formats are a restricted subset of PDS3 acceptable formats. One
of the fundamental goals of PDS4 was to constrain the data formats to a select
few fully functionaly and easily understood formats. This will allow the design
and production of data products to be a much more simple process.

Examples of PDS data formats that have been deprecated under PDS4 include:

PDS4 Data Providers Handbook

15

• HISTOGRAM
• HISTORY
• PALETTE
• QUBE
• SPECTRUM

Under PDS4, there are only four fundamental data structures that can be used
for archiving data in the PDS. All data products delivered to the PDS must be
constructed from one or more of these structures.

These four fundamental structures are described using four base classes:

• Table Base (used to describe heterogeneous repeating records of
scalars),

• Array Base (used for homogeneous n-dimensional arrays of scalars),
• Unencoded Stream Base
• Encoded Stream Base.

From these four fundamental structures, all PDS4 products can be described.

More detailed information on these structures is provided in subsequent sections
of this document.

2.7 PDS3 Representation of Data Types

Under PDS3, data files contained data in either ASCII or binary formats. ASCII
formats allowed for a more human-readable interpretation but at the cost of
substantially more storage space. Where as, binary formats allowed for more
compact storage of data (e.g., an 8-bit signed pixel value in a binary image file
would require a four-byte field if stored in ASCII).

Under PDS4, the data may be represented in any of binary, ASCII, or UTF-8.
The addition of UTF-8 allows PDS to have a more international focus where non-
English characters can be used in the expression of both the data and the
metadata (e.g., a native Russian could express the data and the metadata using
the Russian language, as with other Slavic languages, using characters from the
Cyrillic alphabet).

PDS4 Data Providers Handbook

16

2.8 PDS3 File Record Structure

Under PDS3, record structures were defined at the file level where records of
type FIXED_LENGTH used a physical record length (RECORD_BYTES) that
corresponded directly to the length of the longest logical record of the data
objects contained in the data file.

In the above example where multiple data objects exist in a single data file, the
record structures are blank filled so that each data object has an identical logical
structure of 1204 bytes.

An alternate approach existed under PDS3 to define a Spare Bytes column or
using the ROW_SUFFIX_BYTES keyword.

In this example, the records of the smaller
table, A_TABLE, are padded. The padding
bytes were accounted for in the TABLE
definition using one of two methods: either
by defining a COLUMN called SPARE that
defined the number and location of the
spare bytes, or by using the
ROW_SUFFIX_BYTES keyword.

In this example, the A_TABLE has a logical
row length of 800 bytes where each row has
been padded to 1000 bytes, the length of
the B_TABLE rows, with a 200 byte spare
column.

PDS4 Data Providers Handbook

17

Under PDS4, record structures are no longer identified at the file level. Record
structures are identified at the data object level (i.e., the process of blank filling is
no longer required). This will provide more efficient storage and access to the
data.

2.9 PDS3 Usage of N/A, UNK, and NULL

Under PDS3, during the completion of product labels, one or more values may
not be known or available for some set of required data elements. In this case,
PDS3 provided the symbolic literals “N/A”, “UNK”, and “NULL”, each of which
was appropriate for specific circumstances.

• “N/A” (“Not Applicable”) indicated that the values within the domain of this
data element were not applicable in this instance.

• “UNK” (“Unknown”) indicated that the value for the data element was not

known and never would be known.

• “NULL” was used to flag values that were temporarily unknown. It
indicated that the data preparer recognized that a specific value should
have been applied, but that the true value was not readily available.

Under PDS4, the terse symbolic literals “N/A”, “UNK”, and “NULL” have been
replaced with the more explicit values “not applicable”, “unknown”, and
“temporarily not known”. The circumstances under which the values are used
remains unchanged under PDS4.

There are a limited set of attributes where the values “not applicable”, “unknown”,
and “temporarily not known” can be specified (e.g., time values, numeric values).

PDS4 Data Providers Handbook

18

3.0 PDS4 CONCEPTS AND BUILDING BLOCKS

This section introduces key terms and concepts as they are used within PDS4.
Although the choice of terms is intended to be intuitive, readers should
understand that the definitions are to be used both rigorously and narrowly within
the PDS4 context. For reference, the most important definitions are collected in
Appendix B.

3.1 PDS4 Building Blocks – The Primary Pieces

PDS4 is an archive of digital planetary science data — strings of bits, organized
in such a way that measurements captured by one observer can be retrieved and
used effectively by others.

The strings-of-bits have both structure and meaning. To be interpreted correctly,
each string-of-bits must be accompanied by ‘metadata’ — data about the data —
explaining both the structure and meaning. We address structure first.

3.1.1 PDS4 Base Storage Structures

PDS uses four base storage structures. Note that ‘scalar’ in this context means a
single value; a scalar is not necessarily numerical.

• Array_Base - Homogeneous N-dimensional array of scalars
• Table_Base - Repeating heterogeneous record of scalars
• Parsable Byte Stream
• Encoded Stream Base

These structures are rigidly defined by PDS with the key point being that all data
archived with the PDS must be stored using these structures.

3.1.1.1 Homogeneous N-dimensional Array of Scalars (Array Base)

A 1024x762 pixel image is a 2-dimensional (2-D) example of an Array Base
structure. Each pixel occupies the same number of bits (typically 8 or 16), and
the values are interpreted identically. The pixels are organized into fixed rows
and columns. A time series of such images taken at one second intervals would
be a 3-D example of an Array Base.

PDS4 Data Providers Handbook

19

3.1.1.2 Repeating Heterogeneous Record of Scalars (Table Base)

A listing of local weather conditions would be an example of a Table Base
structure if each record listed measurement location, date and time of the
observation, and the measurements themselves. The column giving location (a
character string) has a different format and meaning than the columns giving
date/time or the numerical values. But every row in the table has the same
format and meaning.

3.1.1.3 Parsable Byte Stream

A digital text file or a stock market ticker are examples of the Parsable Byte
Stream structure. The American Standard Code for Information Interchange
(ASCII) provides a unique translation between letters, digits, punctuation, and a
few functions (e.g., TAB and NEWLINE) and the numerical values represented
by 8-bit bytes. UTF-8 uses 32-bit words to represent all characters in the world’s
written languages (with room to spare) — for example, the Cyrillic characters
below.

3.1.1.4 Encoded Byte Stream

Interpreting an Encoded Byte Stream often requires computation in accordance
with a recognized international standard. For example, ZIP is a popular
compression scheme, and JPEG_2000 can be used for both compression and
tiling of image data. The underlying structure and meaning in an encoded stream
will not be apparent until after the data have been ‘decoded’.

3.1.2 Attributes, Class, and Association

Color is an ‘attribute’ of clothing, food, and landscapes; it is a property or
characteristic that allows us to identify things in our environment and to
distinguish some from others. Length, age, and transparency could be other
attributes. The physical items in our environment have so many attributes that
we don’t often think of them in these discrete terms.

When we organize a digital archive, attributes take on special importance. The
size of a file, the number of rows in a table, or the character set chosen (ASCII or

PDS4 Data Providers Handbook

20

UTF-8) are all critical pieces of information in specifying the structure or
interpreting the meaning of the archive’s contents. ‘Color’ is not a useful attribute
in describing the structure of a digital file; however, ‘wavelength’ or the
specification of an imaging system filter may be very helpful in understanding
content.

A ‘class’ is the set of attributes which identifies a ‘family.’ A class is generic — a
template from which individual members of each family may be constructed. For
example, we might decide that all files in our digital archive need to have the
following attributes: size, record type, and creation time. Those three attributes
then specify a class. Adding a fourth attribute (for example, record length)
specifies a different class which, in this case, would be a ‘sub-class’ of the first.

An ‘association’ is a defined relationship between classes. It has one direction.
For example, a table has one or more columns; “has” is the association.

3.1.3 Object

An ‘object’ is a specific instance of a class. Whereas class is a template, the
object is real. In the archiving context there are three important types of objects:
digital, physical, and conceptual.

Digital objects are everywhere in the archive — for example, the strings-of-bits
that comprise tables, images, and documents. Example physical objects include
spacecraft and Moon rocks; PDS does not hold physical objects (note dashed
outline in figure), but it does include descriptions of them. Example conceptual
objects include space missions and PDS discipline nodes; these do not exist as
tangible entities (note dashed outline), but they can be described, and the
descriptions can be included in the archive.

3.1.4 Object Description

For each digital, physical, or conceptual object in, or associated with, the archive
we need an ‘object description’. The object description (an object in its own right)
is the collection of metadata (the list of attributes and their values) which

PDS4 Data Providers Handbook

21

describes the structure and meaning of the object to which it is paired. For an
image the object description could include the number of lines and samples, the
filter used, the time of observation, etc. In PDS4 the object description is
expressed in XML as part of a PDS ‘label’.

3.1.4.1 Labels

In the sections above we have explicitly mentioned object descriptions, noted
that metadata are used to describe data, and alluded to ‘labels’. A label is the
aggregation of all metadata (including, but not limited to, object descriptions and
‘identifiers’) which accompanies one or more strings-of-bits. A label is
constructed for a product (Section 3.1.6) or higher level entity; but we introduce it
here because of its importance as the home of the object descrioption.

There are six major groupings of information (areas) in a typical label.

3.1.4.1.1 Identification Area
The identification area provides unique information for locating the one or more
products, collections, bundles, etc. listed in the label. The generic identification
area includes the following attributes:

• logical identifier
• version identifier
• product class
• title
• alternate identifier (optional)
• one or more alternate titles (optional)
• last modification date/time (optional)

PDS4 Data Providers Handbook

22

• product subclass (optional)

and an optional association (subject area).

3.1.4.1.2 Cross Reference Area
The cross reference area links the labeled product, collection, bundle, etc. to
other products within the archive or its federated partners. The generic cross
reference area has no attributes and two optional associations:

• bibliographic reference
• reference entry

3.1.4.1.3 Observation Area
The observation area provides information on the circumstances under which the
product, collection, bundle, etc. was acquired. The generic observation area can
have up to five attributes:

• start date and time
• stop date and time
• spacecraft clock start count (optional)
• spacecraft clock stop count (optional)
• comment (optional)

and up to two associations:

• mission area (optional)
• node area (optional)

3.1.4.1.4 File Area
The file area provides information on one or more associated files. Each file has
up to 9 attributes:

• file name
• local identifier
• creation date and time (optional)
• file size (optional)
• maximum record bytes (optional)
• number of records (optional)
• MD5 checksum (optional)
• comment (optional)

PDS4 Data Providers Handbook

23

and a single, required association

• digital object

3.1.4.1.5 Data Area
The data area provides information on at least one associated tagged digital or
non-digital object. Possible digital objects include:

• image grayscale
• spectrum 3D
• table character
• table binary
• stream delimited
• SPICE kernel text
• SPICE kernel binary

3.1.4.1.6 Data Area Alternate

The data area alternate provides information on one or more associated tagged
digital objects. In many labels this area is not used.

The data area alternate describes/defines the secondary digital object(s) where
there is more than one digital object being described. The data area alternate is
repeated for each secondary digital object being described/defined.

3.1.4.1.7 Label Construction

Labels are constructed using XML. PDS has a tutorial [5] on the general use of
XML within the PDS.

3.1.4.2 XML

PDS uses the Extensible Markup Language (XML) for the PDS4 data system.
XML is a set of ‘open source’ rules for encoding documents and data structures
in machine-readable form, with special applicability to providing web services.
With practice, users can become proficient at reading XML. It is beyond the
scope of the DPH to provide an XML tutorial; but we introduce some key
concepts in the following paragraphs.

The fundamental structure in XML is the ‘tag’, which is delimited by “<” and “>”.

PDS4 Data Providers Handbook

24

An ‘XML element’2 begins with <tag> , contains ‘content’, and ends with </tag>.
Particularly simple, ‘XML empty element’, tags can be represented as <tag/>.
For example

<date>2009</date>
<line-feed/>

are both XML elements.

XML elements can be nested to create more complicated XML elements. In the
following example, identification_area comprises logical_identifier, version_id,
title, and last_modification_date (Section 3.1.4.1.1):

 <identification_area>
 <logical_identifier>URN:NASA:PDS:MPFL-M-IMP-2-EDR-V1.0</logical_identifier>
 <version_id>1.0</version_id>
 <title>MARS PATHFINDER LANDER EXPERIMENT</title>
 <last_modification_date>1998-07-14T00:36:08.000</last_modification_date>
 </identification_area>

An XML ‘schema’ (plural schemata) defines the structure of an XML document; it
specifies XML elements which must be included (or are optional), their order, and
‘parent-child’ relationships. A ‘generic’ schema has been established for each
type of anticipated PDS4 product; these can be tailored by data providers to
become ‘specific’ schemas for their archives. See

http://pds.nasa.gov/schema/pds4/generic/common

for the current set of generic schemata available for general use.

Labels and other XML documents must be successfully validated against their
respective schemata before archives will be accepted.

3.1.4.2.1 XML Editors

Use of an XML editor simplifies construction and validation of schemata and
labels. Two which have been popular during development of PDS4 are oXygen
(http://www.oxygenxml.com) and Eclipse
(http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/
R-3.5.2-201002111343/eclipse-SDK-3.5.2-win32-x86_64.zip).

3.1.4.2.2 Label Generators

2 We distinguish ‘XML elements’ here from other PDS ‘elements’ used later,
which have different meanings.

PDS4 Data Providers Handbook

25

An XML editor can tailor a generic schema for an application, such as production
of labels for a set of spacecraft images. The specific schema is then used as a
template in image production software to produce labels for each image.

The Python programming language (http://www.python.org/) has gained favor in
being able to translate schemata quickly into real labels.

3.1.5 Tagged Object

An object and its associated object description form a ‘tagged object’.

There are three types of Tagged Objects. The type of Tagged Object depends
on the type of Object being described - Digital Object, or a Physical Object, or a
Conceptual Object. The latter two are often called ‘tagged nondigital objects.’

PDS4 Data Providers Handbook

26

In the case of Tagged NonDigital Objects, the associated “objects” are described
in a manner such that they can be referenced and associated with other products
in the archive. That is, Tagged NonDigital Objects are ‘intrinsic’ in the sense that
they exist (somewhere) and must be described so that they can be referenced
and associated with other products in the archive. However, Physical and
Conceptual Objects are not (and cannot be) actually stored in the archive ---
because the “objects” exist as entities that cannot be digitized into the archive.

3.1.6 Product

A product consists of Identification Information and one or more associated
tagged objects; the figure below shows a product having two tagged digital
objects. Products are ‘identifiable’ meaning that they can be retrieved from the
archive with a single query. In fact, PDS4 uses logical identifiers and version
identifiers (Section 3.1.6.1), which allow single query retrievals not only from PDS
but also from any other archive participating in its federated registry sysem.

PDS4 Data Providers Handbook

27

In PDS4 several sub-classes of product are recognized, including:

• Product_Image_Grayscale
• Product_Table_Character
• Product_Table_Binary
• Product _Stream_Delimited

3.1.6.1 Identifiers

PDS uses identifiers to locate entities (e.g., products, collections, and bundles)
internally or externally. Each identified entity is termed an “identifiable”.
Identifiers are grouped into XML elements called identification areas (see
example in Section 3.1.4.2).

3.1.6.1.1 Logical Identifiers

A logical identifier (LID) uniquely identifies the set of all versions of a product.
For example, if five versions of an image have been delivered to PDS, the logical
identifier allows a user to find all five (or, if different options were exercised in the
query, a single preferred version — such as the most recent).

PDS4 Data Providers Handbook

28

3.1.6.1.2 Version Identifiers

The version identifier (VID) specifies the version of a product. In combination
with the logical identifier, the version identifier locates exactly one product in PDS
and other federated archives.

Version identifiers have the form:

m[.n]

where m and n are both non-negative integers (and n is optional), n
increments by 1 each time there is a ‘minor’ product revision, m increments by 1
each time there is a ‘major’ revision (and n is reset to 0), and the total length is
at least 1 but no more than 100 characters.

3.1.6.1.3 LIDVID Identifiers

The LIDVID identifier uniquely identifies a versioned product. The LIDVID is
unique across the PDS and other federated archives. The LIDVID is a
concatenation of the logical_identifier (LID), two colons, and the version_identifier
(VID):

lidvid = lid “::” vid

In the identification_area example above (Section 3.1.4.2), the LIDVID would be

URN:NASA:PDS:MPFL-M-IMP-2-EDR::1.0

3.1.6.1.4 Local Identifiers

Sometimes one or more identifiers are needed within a label so that product
components (objects) can be easily located. In these cases, ‘local identifiers’
may be used. These are constructed from the class name; in cases where
several instances of the same class exist, unique numerical suffixes should be
used to distinguish among them. Local identifiers are not valid outside the label
for which they are defined.

PDS4 Data Providers Handbook

29

3.1.7 Collection

The next higher level in the organizational hierarchy is the Collection — an
inventory of member products, an accompanying label (including an identifier),
and (depending on the Collection) the products themselves. The inventory and
label are known as a Collection Product. In a directory structure the Collection
Product is in a directory which has the name of the Collection LID root.

In PDS4 several types of collections may be found in an archive, including:

• Collection_Browse
• Collection_Calibration
• Collection_Context
• Collection_Data
• Collection_Document
• Collection_Geometry
• Collection_SPICE
• Collection_XML_Schema
• Collection_Miscellaneous

An example can be found at the following url:

http://pds.jpl.nasa.gov/repository/pds4/examples/

3.1.7.1 Primary Collection

PDS4 Data Providers Handbook

30

When delivered to PDS, every product must be associated with a single primary
collection. The data provider defines the association.

The Primary Collection Product identifies member products by LIDVID.

In a directory structure the Primary Collection member products are in a single
subdirectory, or subdirectories thereof, which is parallel to the Collection Product.

3.1.7.2 Secondary Collection

Products which are already in the archive (and, therefore, associated with a
primary collection) may later be associated with other, secondary collections.
For example, a set of Mars Reconnaissance Orbiter images collected during
observations in 2009 may be assigned to the ‘MRO_2009’ primary collection.
Another investigator may wish to study all Mars images covering 0-5 S latitude
200-205 E longitude; some of the MRO_2009 images would qualify, but so would
MRO images from other years, as would images from other spacecraft imaging
systems.

A Secondary Collection Product identifies member products by LID, VID, or
LIDVID. Ordinarily a Secondary Collection would not include products; for
delivery to a user, however, PDS may create a temporary subdirectory parallel to
the Secondary Collection Product in which products are stored before transfer.

3.1.8 Bundle

Just as a Collection groups products, a Bundle groups Collections. The Bundle
comprises a Product Bundle (a labeled inventory) and subdirectories for each
Collection. Because the number of Collections is small, the inventory and label
may be combined efficiently into a single XML file, effectively making the
inventory a conceptual object.

PDS4 Data Providers Handbook

31

In PDS4 there are no Bundle sub-classes.

An example can be found at the following:

http://pds.jpl.nasa.gov/repository/pds4/examples/

3.1.8.1 Structure of Bundles

A Product Bundle identifies all of its member collections (collection_browse,
collection_calibration, collection_data, etc). The included collections are each
described by a Bundle_Member_Entry XML element, as in the example below:

<Bundle_Member_Entry>

<file_specification_name >Collection_SPICE</file_specification_name>
<lid_reference>URN:NASA:PDS:Collection_SPICE</lid_reference>
<reference_association_type>has_association</reference_association_type>

</Bundle_Member_Entry>

The following steps describe how the values in the Bundle_Member_Entry XML
element are derived.

1. <directory_path_name> is the path from Bundle.xml to the directory
holding the Collection_Product label. The diagram below illustrates

PDS4 Data Providers Handbook

32

2. <lid_reference> is the LID of the Collection_Product label

3. <reference_association_type> is always set to “has_association”.

3.2 The PDS Registry

Products, collections, and bundles are related to one another through the registry
system, using metadata supplied in labels. The registry can be viewed as a set
of linked data bases, at least one of which keeps track of PDS data holdings.

3.2.1 Registry Use of Identification XML Elements

The label Identification_Area (Section 3.1.4.1.1) contains naming and origination
information which the registry captures and stores, keyed to the logical_identifier
(Section 3.1.6.1.1) and/or the LIDVID (Section 3.1.6.1.3). An example
Identification_Area_Product, is shown below.

<Identification_Area_Product>

<logical_identifier>
 URN:NASA:PDS:MGS-M-RSS-5-TPS-V1.0:TPS:4147E13A.TPS
</logical_identifier>
<version>1.0</version_id>
<product_class>Product_Table_Character</product_class>
<title>4147E13A.TPS</title>
<last_modification_date_time>

2005-05-06T04:27:43
</last_modification_date_time>
<Subject_Area>

<instrument_host_name>MARS GLOBAL SURVEYOR</instrument_host_name>
<instrument_name>RADIO SCIENCE SUBSYSTEM</instrument_name>
<target_name>MARS</target_name>

</Subject_Area>
</Identification_Area_Product>

3.2.2 Registry Use of Cross Reference XML Elements

PDS4 Data Providers Handbook

33

The Cross_Reference_Area_Product contains links to other products,
collections, or bundles in PDS or any other archive served by its federated
registry. The primary function of the Cross_Reference_Area_Product of a PDS4
label is to be the vehicle by which various types of products can be “linked /
associated” with / to the “identifiable” which in this case is the primary product
being described by the product label.

 The following diagram illustrates how the “Cross_Reference_Area_Product” is
used to make associations to the primary product via the unique identifier of the
primary product.

The unique identifier for the primary product, the product being described by the
product label, is the value of the logical_identifier as specified in the
Identification_Area_Product.

The set of products that are to be linked to / referenced by the primary product
are identified by the lidvid_reference as specified in the
Product_Reference_Entry class which is a subclass of the
Cross_Reference_Area_Product class.

PDS4 Data Providers Handbook

34

In the above Cross_Reference_Area_Product example, there are five
Product_Reference_Entry classes which identify and provide an association to
the primary product. In the above, the primary product has associations to:

1. An investigation: URN:NASA:PDS:investigation.PHOENIX
2. An instrument_host: URN:NASA:PDS:instrument_host.PHX
3. An instrument: URN:NASA:PDS:instrument.TT+PHX
4. A Target: URN:NASA:PDS:target.MARS
5. An node: URN:NASA:PDS:node.ATMOS

Each association is uniquely identified by the “lidvid_reference”. And, each type
of association is identified by the “reference_association_type”.

Given the “lidvid_reference”, the registry will be able to locate the product and all
products that are linked / have associations with the product.

3.3 Miscellaneous Label Topics

TBD

3.3.1 Elusive Values

3.3.1.1 Elusive Values in Labels

PDS4 Data Providers Handbook

35

During creation of product labels, appropriate values for some attributes may not
exist. In such cases, PDS4 provides symbolic values, each of which is
appropriate for specific circumstances.

• “not applicable” indicates that the attribute is not relevant; no value is
known and knowledgeable users would not expect to find one.

• “unknown” indicates that the value for the data element is not known and

never will be known.

• “temporarily not known” is used when the value is temporarily unknown. It
indicates that the data provider recognizes that a value should be inserted,
but the true value is not readily available.

There are a limited set of attributes where the values “not applicable”, “unknown”,
and “temporarily not known” can be specified (e.g., time values, numeric values).

3.3.1.2 Elusive Values in Data Products

A second approach exists for numeric fields. Numeric fields should not contain
character strings (e.g., “not applicable”); but an otherwise unexpected numeric
value can be used to flag special circumstances. The Special_Constants class,
in conjunction with the following XML tags, is used to provide a set of such
values:

<error_constant>
<invalid_constant>
<missing_constant>

<not_applicable_constant>
<saturated_constant>
<unknown_constant>

For example, if a two-digit value is “unknown” — that is, the value is not known
and never will be known — a value outside the normal range can be chosen to
indicate “unknown” — e.g., 999. To flag that the data were invalid (in some
respect), a different value (e.g., -999) could be chosen to indicate that second
condition. The XML Special_Constants element would then look like

 <Special_Constants>
 <invalid_constant>-999</invalid_constant>
 <unknown_constant>999</unknown_constant>
 </Special_Constants>

The individual uses for the above Special_Constants elements are defined in the
Data Dictionary [3].

PDS4 Data Providers Handbook

36

3.3.2 Cardinality

Cardinality of a set is the number of elements in the set. For example, the set A=
{1,5,10} contains 3 elements, and therefore A has a cardinality of 3. PDS4 uses
cardinality to specify the number of attribute values or associations expected in
labels; it also provides a shorthand for indicating whether ‘children” are optional
or required. See the table below for example values and interpretations:

Cardinality Desciption

 0..1
Within the context of the parent, the child
may optionally exist as a single non-
repeating instance

 0..*
Within the context of the parent, the child
may optionally exist as an unbounded
repeating instance

 1 Within the context of the parent, the child
must exist once and only once

 1..* Within the context of the parent, the child
must exist at least once

 2 Within the context of the parent, the child
must exist twice and only twice

 2..* Within the context of the parent, the child
must exist at least twice

The diagram below illustrates the parent-child relationship using cardinality
nomenclature.

1. The PROPERTY_MAP class comprises a single child class, the

PROPERTY_MAP_ENTRY class.
2. The PROPERTY_MAP_ENTRY class must exist once but may exist many

times within the context of the parent PROPERTY_MAP class.

PROPERTY_MAP 0..1
 LOCAL_IDENTIFIER 1
 COMMENT 0..1
 NAMESPACE_ID 1

PROPERTY_MAP_ENTRY 1..*
 PROPERTY_NAME 1
 PROPERTY_VALUE 1..*

PDS4 Data Providers Handbook

37

3. The parent PROPERTY_MAP class comprises two required non-repeating
attributes (LOCAL_IDENTIFIER and NAMESPACE_ID) and a single optional
non-repeating attribute (COMMENT).

4. The PROPERTY_MAP_ENTRY class comprises a single required non-
repeating data element (PROPERTY_NAME)

PDS4 Data Providers Handbook

38

4.0 ASSEMBLING A BUNDLE

All data archived with the PDS must be be delivered in a Bundle. This section
describes the Collections which are required and the process that is used to
create such a Bundle.

4.1 Structure of the Bundle

Figure 4.1 shows the structure of a Bundle, representative Collections, and their
relationships.

Figure 4-1. Physical Structure of an Archive Bundle (abbreviated)

Figure 4-2 shows the root of a Bundle, including an example of each type of
possible collection. Cardinality of each Collection and whether the Collection
name can be chosen by the data provider are shown at the bottom of each box.
The Bundle_Product, a file with the name bundle.xml, is required (cardinality 1).
A Document_Collection is optional (cardinality “0..1”); if present, it must be
present in a directory “document”.

PDS4 Data Providers Handbook

39

Figure 4-2. Top-level Root Structure of an Archive Bundle

4.1.1 Bundle Product

Cardinality: 1 (required)

PDS4 Data Providers Handbook

40

 Naming: fixed (bundle.xml)

This XML file uniquely defines the Bundle; it lists every member Collection, first
by LID and second by file_specification_name.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.2 Browse Collections and Directories

Cardinality: 0..* (optional and unlimited)
 Naming: unfixed

Browse Collections contain ‘quick-look’ products that facilitate use of the archive.
Some data providers choose Browse directory structures that parallel the
directories in corresponding Data Collections..

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

PDS4 Data Providers Handbook

41

4.1.3 Calibration Collections and Directories

Cardinality: 0..* (optional and unlimited)
 Naming: unfixed

Calibration Collections contain calibration data and other files necessary for the
calibration of the data products. Some data providers choose Calibration
directory structures that parallel the directores in corresponding Data Collections.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.4 Context Collection and Directory

Cardinality: 0..1 (optional, but no more than one)
 Naming: fixed (CONTEXT)

A Context Collection contains all context products associated with an archive.
These are the products identified in the Product Cross Reference Area of the
data products in the archive. If present, the Contrext Collection is in the context
directory.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

PDS4 Data Providers Handbook

42

4.1.5 Data Collections and Directories

Cardinality: 0..* (optional and unlimited)
 Naming: unfixed

Data Collections contains the archive data products. Some data providers
choose to organize data into subdirectories to prevent over-crowding and
facilitate archive organization.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.6 Document Collections and Directory

Cardinality: 0..1 (optional, but not more than one)
 Naming: fixed (DOCUMENT)

A Document Collection contains document products that provide documentation
and supplementary and ancillary information to assist in understanding and using
the data products in the Bundle. The documentation may describe the mission,
spacecraft, instrument, and data. It may include references to science papers
published elsewhere. .

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

Notes:

PDS4 Data Providers Handbook

43

1. All files comprising a document product, as described in the
product’s label, must be in the directory containing the label
or in subdirectories of that directory. If not in the same
directory, the label must show the relative path from the root
of the DOCUMENT directory to each.

2. When multiple files comprise a document product, the parent file
is listed first in the label.

4.1.7 Gazetteer Collection and Directory

Cardinality: 0..1 (optional, but not more than one)
 Naming: fixed (GAZETTEER)

A Gazetteer Collection contains information about all the named features on a
target body associated with the data products in the bundle. “Named features”
are those the International Astronomical Union (IAU) has named and approved.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.8 Geometry Collection and Directory

Cardinality: 0..1 (optional, but not more than one)
 Naming: fixed (GEOMETRY)

A Geometry Collection contains non-SPICE information that describes or is
related to the observing geometry for the data products in the Bundle. A
Geometry Collection is appropriate for observations that were conducted without
SPICE or for supplementary information which was derived using SPICE..

PDS4 Data Providers Handbook

44

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.9 SPICE Collection and Directory

Cardinality: 0..1 (optional, but not more than one)
 Naming: fixed (SPIC)

A SPICE Collection contains SPICE kernels relevant to the data products in the
Bundle, SPICE software, and SPICE documentation. The SPICE system
includes a suite of software, mostly in the form of subroutines, that may be
incorporated into users’ application programs to read SPICE data files and
compute observation geometry such as altitude, latitude/longitude, and lighting
angles.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.10 XML_Schema Collection and Directory

Cardinality: 1 (one and only one Collection is required)
 Naming: fixed (XML_SCHEMA)

The XML Schema Collection contains every schema that has been used in
creating the Bundle, its Collections, and their Products.

PDS4 Data Providers Handbook

45

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.1.11 Miscellaneous Collections and Directories

A Miscellaneous Collection contains information which does not conveniently fall
into other, named Collections and which is relevant to Products in the Bundle.

An example can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/

4.2 Assembling the Collections

Each Collection in a Bundle is distinguished by having products of a different
‘type’; the distinctinguishing characteristics are established by the data provider
and may include subject (documents vs data), source (different instruments),
format (ASCII vs binary), time (2009 vs 2010), or other criteria. The recognized
subclasses of Collection are outlined above; Miscellaneous Collections contain
information which does not fit easily into one of the other sub-classes.

Each Collection is defined by a Collection_Product — a table listing every
product in the collection with information on how to locate the product and an
XML label for the table. The Collection Product is in a directory which has the
name of the Collectyion LID root. Member products are in a subdirectory parallel
to the Collection Product, which may itself be divided into subdirectories.

An example can be found at the following url:

http://pds.jpl.nasa.gov/repository/pds4/examples/

PDS4 Data Providers Handbook

46

5.0 PDS4 DATA REPRESENTATION

Data can be an elusive concept. Data may exist in some storage format on some
disk somewhere, on paper somewhere else, in active memory on some server,
or transmitted along some wire between two computers. All these can still
represent the same data. That is, there is an important distinction to be made
between the data and its representation. The data consist of numbers: abstract
entities that usually represent measurements of something, somewhere. Data
also consist of the relationships between those numbers, as when one number
defines a time at which some quantity was measured.

The abstract existence of data is in contrast to its concrete representation, which
is how the data is viewed, manipulated, and stored. Data can be stored as BCD
numbers in a file on a disk, or as twos-complement integers in the memory of
some computer, or as numbers printed on a page. It can be stored in netCDF,
HDF, JGOFS, a relational database and any number of other digital storage
forms.

The PDS specifies a particular representation of data, to be used in archiving that
data. This “archival” representation distinguishes it from the representations
used in some computer’s memory (i.e., how the data is stored or represented on
either the sending or receiving computer; or the transmission format used to
communicate between the two servers).

For this document, we identify two special types of objects -- the "data object"
and the "data object description." The data object contains "data," and (by itself)
is not otherwise constrained. The data object description contains information
about another object, such as a data object. By linking a data object with a data
object description, we create a pair which includes both the data and enough
information that we can start to read and interpret the bits --- a PDS Tagged
Object.

A data object description can (and often does) exist without being physically
accompanied by another object. The object it describes may not be physical
(e.g., a space mission which, although it has physical components, is itself a
concept) or it may not be practical to include the physical object (e.g., the planet
Saturn).

Note that within the context of this document, of three types of data objects
(digital, conceptual, and physical), we will only address “digital data objects”.

PDS4 Data Providers Handbook

47

At its simplest, a PDS4 Tagged Object consists of a PDS4 Data Object
Description (e.g., a PDS4 Label) and a “digital” Data Object (e.g., sequence of
bits) that are described by the metadata resident in the PDS4 Label. The Data
Object Description describes both the physical and logical structure of the
referenced Data Object.

5.1 PDS4 Data Structures

PDS4 defined four new basic types of data structures for the purposes of
describing data objects. All current PDS4 digital object classes fall into one of
the four basic data structures.

1. Array_Base - Homogeneous N-dimensional array of scalars

Homogeneous N-dimensional array of scalars -- describes a collection of "items"
of the same type. Every "item" takes up the same size block of memory, and all
blocks are interpreted in exactly the same way (i.e., the number of “items” in an
array is fixed by that specified by the size of its dimension). How each "item" in
the array is to be interpreted is specified by a separate data-type class, of which
one is associated with every array (i.e., the “items” in an array are represented by
an identical storage format – MSB_INTEGER_4_BYTE,
MSB_INTEGER_2_BYTE, etc).

An instance of the Array_Base class consists of a collection of contiguous one-
dimensional segments of memory (owned by the array), combined with an
indexing scheme that maps the "items". How many bytes in each "item" and how
the bytes are interpreted is defined by the data-type class associated with the
array (i.e., basic constraints on storage order, element types, and maximum
number and length of axes are defined by the data-type class).

 Example Classes:
 - Image_Grayscale
 - 3D Image

PDS4 Data Providers Handbook

48

2. Table_Base - Heterogeneous repeating record of scalars

Heterogeneous repeating record of scalars -- describes a collection of "items"
where the "items" characteristics may vary within a row of "items". Every column
of "items" takes up the same size block of memory, and all blocks are interpreted
in exactly the same way (i.e., the number of “items” in an array is fixed by that
specified by the size of its dimension). How each "item" in the table is to be
interpreted is specified by a separate data-type class, of which one is associated
with every array (i.e., the “items” in an array are represented by various storage
formats – ascii_integer, integer, ascii_real, real, etc).. The term record is used
here to denote a data structure whose elements have heterogeneous data types.

An instance of the Table_Base class consists of a collection of contiguous one-
dimensional segments of memory (owned by the table), combined with an
indexing scheme that maps the "items". How many "items" in each row, how
many bytes in each "item" and how the bytes are interpreted is defined by the
data-type class associated with the table (i.e., basic constraints on storage order,
element types, and number and length of rows are defined by the data-type
class).

 Example Classes:
 - Binary table
 - Character table

3. Unencoded Stream Base

Unencoded stream base -- describes a collection of "items" where the "items" are
interpreted without any character encoding (e.g., ASCII character set).

An instance of the Unencoded_Stream_Base class consists of a contiguous
stream of ASCII characters, combined with a field_delimiter scheme that maps
the "items". How many "items" in each record, how the bytes are interpreted is
defined by the data-type class associated with the unencoded_stream_base (i.e.,
basic constraints on number of fields in a record, element types, and the number
of records are defined by the data-type class).

 Example Classes:

- CSV_file
- Header

4. Encoded Stream Base

PDS4 Data Providers Handbook

49

Encoded stream base -- describes a collection of "items" where the "items" are
interpreted in accordance with a recognized International Standard (e.g.,
JPEG_2000).

 Example Classes:
 - SPICE_Kernel

5.2 PDS4 Data Product Description

TBD

PDS4 Data Providers Handbook

50

6.0 PDS4 PRODUCT LABEL SCHEMA

This section introduces the concept of a product label schema and how a
schema is used in the process of designing, generating, and validating the
products in your archive. Objects were introduced in Section 3.1.3, object
descriptions in Section 3.1.4, and products in Section 3.1.6. In Section 3.1.4.1
we explained that the practical application of object descriptions is in ‘labels’,
which are based on XML schemata (Section 3.1.4.2). This section describes
how the label for an actual product is created.

PDS4 Data Providers Handbook

51

Figure 6-1. Diagram of the Lifecycle of a Product Label Schema

Figure 6-1 shows the steps between the PDS4 information model and an actual
PDS4 compliant product label or set of labels. The information model includes
specifications for each of the entities allowed in the archive; these can be
expressed as generic XML schema documents (XSD files). The complete set of
PDS4 generic schemata can be found at

http://pds.nasa.gov/schema/pds4/generic

Subdirectories hold schemata that are common across PDS as well as schemata
that are defined by the PDS Discipline Nodes.

Once data products have been identified for archiving, the initial step of
designing a data product should have been defined by science requirements. In
most cases, the structure of the data was probably determined before your
instrument was selected for the mission. The structure of the underlying data is
typically obvious (e.g., table or image structure).

• TABLE - a uniform collection of ROWs and COLUMNs stored in either
ASCII or binary format. ASCII forms are easily imported into a variety of
spreadsheet and database applications.

• IMAGE - a two dimensional array of spatially organized measurements

(LINES and SAMPLES). Many public domain image display programs can
read PDS Image objects.

PDS has created sets of generic product label schemas that address all of the
envisioned PDS4 structures. Your first step is to select, from the set of PDS4
“Generic” Product Label Schemas, the schema that most closely represents your
data product (e.g., Image Grayscale, Table Character, Table Binary, etc).

The next step is to review the “Generic” Product Label Schema and to tailor this
schema to be more specific to the product that you want to archive with the PDS.
The process by which the “Generic” schema is tailored to become the “Specific”
schema is, at least at this point, a manual process. Expect several iterations and
use the assistance of your PDS representative.

The generic schemata incorporate many options which data providers will not be
interested in adopting. An XML editor (Section 3.1.4.1.2) can quickly remove the
unneeded optional sections. A simple text editor can also be employed, but it will
not have the built-in error detection and verification features of an XML editor. At
the same stage, special requirements imposed by the responsible PDS Discipline
Node may be incorporated. The result is a ‘specific schema’ — another XSD file.

PDS4 Data Providers Handbook

52

The “specific schema represents the overall structure and format of the archived
data product; it defines, in the strictest sense, the greatest latitude permissible in
validation of the product to ensure PDS compliance.

The specific schema also serves as the building block from which a label
template can be derived — often ‘exported’ from an XML editor (Section
3.1.4.2.2). The label template, when used in a data processing pipeline, then
allows generation of individual product labels. Whether they use the term or not,
data producers will almost certainly have a need to develop a 'pipeline' for
handling mission data. The pipeline begins with data collection (as from a
telemetry stream) and ends with generation of standard products. Except for a
few ancillary documents, the pipeline will provide most of the products you will
need for your archive. PDS personnel can offer suggestions for automating the
label generation process, including the use of PDS tools.

Other tools provide convenient ways to check that individual products meet PDS
archiving Standards. Some validation tools can be built into the data processing
pipeline. Consult your PDS rep to obtain the latest versions of validation tools
and for assistance in effective use of them.

6.1 Restrictions in Tailoring Schemas
TBD

6.2 Building and Using Local Data Dictionaries
TBD

6.3 Example of Relationship of Schemas to Labels

This section illustrates the lifecycle process of the “generic” and “specific” product
label schemas and how they relate to the label template and the resulting product
labels. The above is demonstrated by using an example PDS3 data product.

The example product is a simple ASCII table that is currently in the PDS3
archive.

• MGS-M-RSS-5-TPS-V1.0: A radio science data set that seems to consist
of well-behaved ASCII tables with little or no additional keywords beyond
those in a basic label. There are two tables in each label, but both tables
are in the same file (one is a single line of header parameters).

PDS4 Data Providers Handbook

53

The files that describe both the PDS3 and the PDS4 data products can be found
at:

• PDS3 ODL Label: http://tbd
• PDS3 data product: http://tbd

• PDS4 XML Label: : http://tbd
• PDS4 XML Label template: : http://tbd
• PDS4 Generic Schema: : http://tbd
• PDS4 Specific Product Schema: : http://tbd
• PDS4 Specific Data_Set Schema: : http://tbd

Note that at this time, the above examples are out of date with the current
information model and therefore do not provide an exact representation of
the current schemas.

Step #1: Select, from the set of PDS4 “Generic” Product Label Schemas, the
schema that most closely represents your data product (e.g., Image Grayscale,
Table Character, Table Binary, etc)

Step #2: Download the “Generic” Product Label Schema from:

http://pds/schema/pds4/common/

Step #3: Make a copy of the “Generic” Product Label Schema and save the copy
as the “Specific” Product Label Schema.

Step #4: Examine the as yet unmodified “Specific” Product Label Schema in your
favorite XML editor (e.g., Oxygen or Eclipse). You may also examine the
schema in a text editor (e.g., UltraEdit, BBEdit, etc). Ensure that the XML is fully
formed (i.e., the XML editor will validate the XML and will have an indicator
(which is usually a green or red box) that indicates if errors are present in the
XML).

Note that if there are errors in the XML schema, contact your PDS representative
for further instructions on how to resolve any discrepancies.

Step #5: Use the editor to tailor this schema to be more specific to the product
that you want to archive with the PDS. The “Specific” schema represents the
overall structure and format of the archived data product. The “Specific” schema
defines, in the strictest sense, the greatest latitude permissible in the validation of
the product label to ensure PDS compliance.

Examples of types of “edits/restrictions” that might be appropriate with respect to
the specific schema; include:

PDS4 Data Providers Handbook

54

1) Restrict the set of all possible target names to a single value (e.g., MARS).
2) Restrict the instances in the File_Area_Type to a single reference to the

type of file being described (i.e., in our example we are describing a
character table having fixed length records – so we would remove all
instances except the reference to File_Character_Fixed).

3) As our example table product does not have any “Statistics”, remove all
references to Object_Statistics_Type

4) As our example table product does not have any “Special Constants”,
remove all references to Special_Constants_Type.

Expect several iterations and use the assistance of your PDS representative.

Step #6: Save the edited/tailored “Specific” Product Label Schema.

Step #7: Most XML Editors provide a capability to “export/create” an XML label
from an XSD. You will want to use this feature to export/create a sample label
(which is an XML file) from the “Specific” schema (which is an XSD file). Save
the sample label.

Step #8: Examine the sample label in either your favorite XML editor or text
editor. Ensure that the XML is fully formed (i.e., the XML editor will validate the
XML and will have an indicator (which is usually a green or red box) that
indicates if errors are present in the XML. As the sample label was generated by
the XML editor, there shouldn’t be any errors. Contact your PDS rep to resolve
any discrepancies.

Step #9: Now that you have a “valid” XSD and sample label, we can proceed
with creating a data product pipeline that will pump out gazillions of PDS
compliant labels.

Validating the data product labels is where the data product schemas become
invaluable. The use of XML in data product labels and in schemas provides an
expedient method by which your pipeline can ensure your product labels are
PDS compliant. The PDS can offer suggestions for automating the validation
process; including, the use of PDS tools.

6.4 Validating the Relationship of Schemas and Labels

This section describes the process of validating the object-oriented design and
the inherent relationships of and between the generic schema, the specific
schema, and the resulting child XML document,

Figure 7-2 illustrates the process by which users ensure the resulting XML
documents are compliant to the parent schemas. The validation process

PDS4 Data Providers Handbook

55

guarantees the object-oriented design of the parent-child relationships are
preserved through out the design and implementation stages of preparing XML
documents; specifically that:

1. The “Specific” Product schema validates/are valid against the “Generic”
Product schema.

2. The “Label Template” validates/are valid against the “Specific” and the

“Discipline Specific” schemas.

3. The PDS4 complaint labels validate/are valid against the “Specific” and
the “Discipline Specific” schemas.

Figure 6-2. Diagram of the Validation Lifecycle of a Product Label Schema

The underlying mechanism by which the above three steps is accomplished is
noted as an XML editor (e.g., Oxygen or Eclipse). But, there are alternate
mechanisms which could be used in place of your favorite XML editor; such as,

PDS4 Data Providers Handbook

56

an XML/XSD aware application. A machine-assisted mechanism for ensuring
the “Specific” schema is valid against the “Generic” schema has yet to be
determined.

PDS4 Data Providers Handbook

57

7.0 PDS4 DATA PRODUCT GENERATION

This section introduces the concept of a data product and how a data product
label (see Section 6) is married with the data to form a PDS4 compliant product.
Objects were introduced in Section 3.1.3, object descriptions in Section 3.1.4,
and products in Section 3.1.6. In Section 3.1.4.1 we explained that the practical
application of object descriptions is in ‘labels’, which are based on XML
schemata (Section 3.1.4.2). This section describes how the actual product is
created, how products are collected and bundled into an archive.

TBD

PDS4 Data Providers Handbook

58

8.0 EXAMPLE PDS4 PRODUCTS

A PDS4 tutorial would not be complete without providing a set of PDS4 products
that were generated from example PDS3 products.

The set of examples can be found at:

http://pds.jpl.nasa.gov/repository/pds4/examples/dph_examples/

The HTML page that provides detailed descriptions of the PDS4 products can be
found at:

/http://pds.jpl.nasa.gov/repository/pds4/examples/dph_examples/PDS4ExampleD

ataProductClasses.htm

Within the set of examples, there is an example of the following product types:

1. the IMAGE_GRAYSCALE extension of the PDS4 Array_Base, (i.e.,
Homogeneous N-dimensional array of Scalars) class where a contiguous
stream of BINARY data, assembled as a two dimensional data structure,
maps the "items" contained in a IMAGE_GRAYSCALE file.

2. the TABLE_CHARACTER extension of the PDS4 Table_Base (i.e.,

Heterogeneous repeating record of Scalars) class where a contiguous
stream of ASCII characters, assembled as fixed-width fields, maps the
"items" contained in a TABLE_CHARACTER file.

3. the TABLE_BINARY extension of the PDS4 Table_Base (i.e.,

Heterogeneous repeating record of Scalars) class where a contiguous
stream of BINARY data, assembled as fixed-width fields, maps the "items"
contained in a TABLE_BINARY file.

4. the TABLE_CHARACTER_GROUPED extension of the PDS4

Table_Base (i.e., Heterogeneous repeating record of Scalars) class where
a contiguous stream of ASCII characters, assembled as sets of repeating
fixed-width fields, maps the "items" contained in a
TABLE_CHARACTER_GROUPED file.

5. the STREAM_DELIMITED class where a contiguous stream of ASCII

characters, combined with a field_delimiter and record_delimiter scheme,
maps the "items" contained in a CSV “like” file.

PDS4 Data Providers Handbook

59

6. the DOCUMENT_SET class where one or more instantiations of a
document (e.g., ascii text, pdf, html), as identified as a set, comprise a
logically complete “copy” of the referenced document product.

PDS4 Data Providers Handbook

60

APPENDIX A ACRONYMS

The following acronyms are pertain to this document:

ADM Architecture Development Method
API Application Programming Interface
COTS Commercial Off-The-Shelf
EN Engineering Node (PDS)
ESDIS Earth Science Data and Information System
FTP File Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IPDA International Planetary Data Alliance
IT Information Technology
JPL Jet Propulsion Laboratory
NASA National Aeronautics and Space Administration
NSSDC National Space Science Data Center
PDS Planetary Data System
RM-ODP Reference Model of Open Distributed Processing
RSS Really Simple Syndication
SDSC San Diego Supercomputing Center
SOA Service-Oriented Architecture
TB Terabyte
TOGAF The Open Group Architecture Framework
XML eXtensible Markup Language

PDS4 Data Providers Handbook

61

APPENDIX B DEFINITION OF TERMS

The following are definitions of essential terms used throughout this document:

Association:

An "association" is a type of defined relationship between classes.

Attribute:

An "attribute" is a property or characteristic that allows both identification and
distinction.

Cardinality:

"Cardinality" is the number of values allowed to an attribute or association in a
single class. Cardinality in general is stated as a range with a minimum and
maximum. For example, an attribute that may be multi-valued will have a
cardinality of "1..*". A cardinality where the minimum and maximum are the
same is often shown as the single value. For example, an attribute required to
have exactly one value will have a cardinality of "1". When a value is required
the minimum cardinality is at least 1. At least one value is always required in
PDS4.

Class:

A "class" is the set of attributes which identifies a family. A class is generic --
a template from which individual members of each family may be constructed.

Class Hierarchy:

A "class hierarchy" is a classification of object types, denoting objects as the
instantiations of classes.

Data Elements:

A "data element" is a discrete unit of data or metadata. It is an elementary
piece of information in a data dictionary.

Entity:

An "entity" is something that has a distinct, separate existence.

Metadata:

Metadata is data about data.

Model:

A "model" is a representation or description designed to show an entity and
its composition.

PDS4 Data Providers Handbook

62

Object:
An "object" is a specific instance of a class.

PDS4 Data Providers Handbook

63

Use to describe in cross_reference_area

Product Type reference_association_ty

pe
referenced_object_type

Product_Browse has_browse Product_Browse
Product_Calibration has_calibration Product_Calibration
Product_Geometry has_geometry Product_Geometry
Product_PDS_Affiliate or
Product_PDS_Guest

has_personnel Product_PDS_Affiliate or
Product_PDS_Guest

Product_SPICE has_spice Product_SPICE
Product_Target has_target Product_Target
Product_Thumbnail has_thumbnail Product_Thumbnail
Product_Document has_document Product_Document
Product_Investigation has_investigation Product_Investigation
Product_Instrument_Host has_instrument_host Product_Instrument_Host
Product_Instrument has_instrument Product_Instrument
Product_Node has_node Product_Node
Product_Resource has_resource Product_Resource

