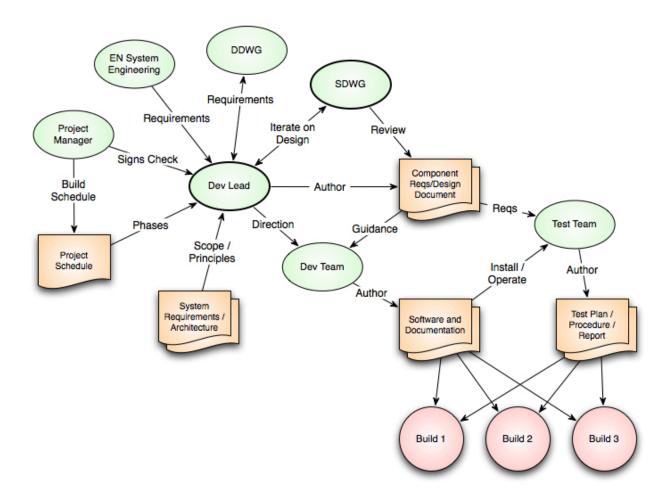
Planetary Data System

System Design: Data Ingestion Update

PDS System Design Review II Greenbelt, Maryland June 21-22, 2011

Sean Hardman


Topics

- Overview and Design Process
- Ingestion Related Components and Flow
- Registry Service
- Harvested Metadata
- Deployment and Plans
- Wrap Up

Overview

- Although covered in the first system review, this presentation provides an update on Data Ingestion.
 - Includes progress to date.
 - Provides more detail than was available the first time around.
- Data ingestion involves preparation, receipt and registration of PDS products.
 - This includes PDS3 and PDS4 data.

Design Process

System Design: Data Ingestion Update

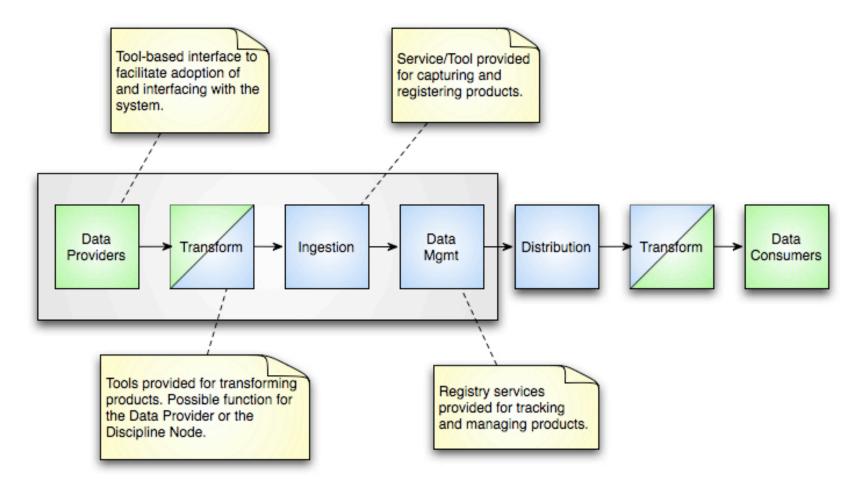
Design Process cont.

- Each component has a corresponding requirements and design specification.
 - Level 4 and 5 requirements traced back to PDS Level 1, 2 and 3 requirements.
 - Each specification undergoes multiple drafts with comments incorporated.
- Additionally there is a general system software requirements document for requirements that pertain to all or most of the components.
- Requirements traceability and mapping of requirements to the builds is captured in another document.

Design Status

- Controlling documents completed and reviewed:
 - System Architecture Specification
 - General System Software Requirements
- Documents completed and reviewed:
 - Registry, Harvest and Security Requirements and Design
- Documents in process:
 - Preparation (Tools) Requirements and Design
- Latest versions posted to Engineering Node site
 - <u>http://pds-engineering.jpl.nasa.gov/index.cfm?</u>
 <u>pid=145&cid=134</u>

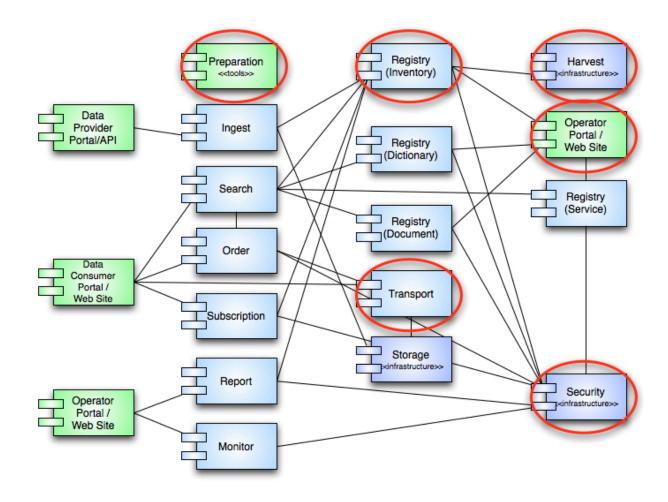
Key Level 3 Requirements


- 1.5.1 PDS will provide tools to assist data producers in generating PDS compliant products
- 1.5.2 PDS will provide tools to assist data producers in validating products against PDS standards
- **2.2.2** PDS will track the status of data deliveries from data providers through the PDS to the deep archive
- **2.6.2** PDS will design and implement a catalog system for managing information about the holdings of the PDS
- **2.6.3** PDS will integrate the catalog with the system for tracking data throughout the PDS
- 2.8.2 PDS will maintain a distributed catalog system which describes the holdings of the archive

Topics

- Overview and Design Process
- Ingestion Related Components and Flow
- Registry Service
- Harvested Metadata
- Deployment and Plans
- Wrap Up

Ingestion


(Capture and Registration of Products into the System)

June 21-22, 2011

System Design: Data Ingestion Update

Ingestion Related Components

June 21-22, 2011

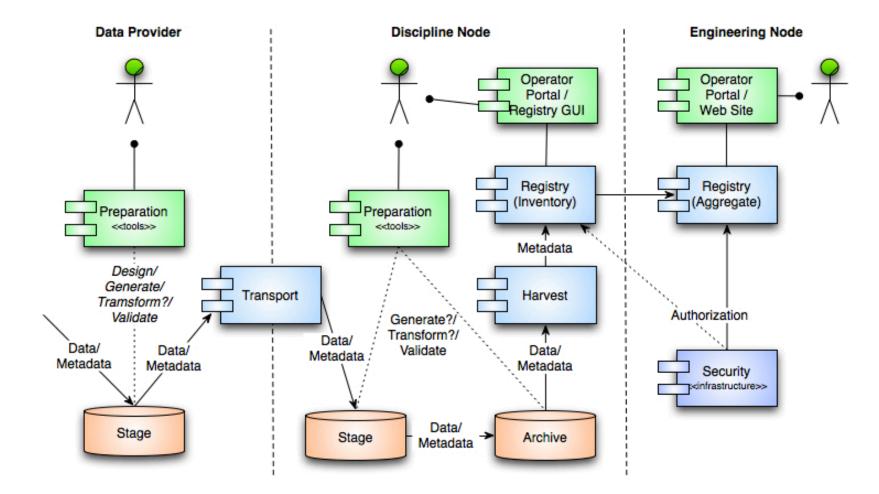
System Design: Data Ingestion Update

Ingestion Related Components Preparation Tools and Transport Service

- Preparation Tools
 - Suite of tools for preparing data for ingestion into PDS focusing on design, generation, transformation and validation.
 - Allows for existing Node processes and procedures to be utilized for ingestion of data products.
 - Minimizes up-front interface changes for Data Providers.
- Transport Service
 - Represents continued support for FTP (push/pull) and Data Brick delivery mechanisms.
 - Currently looking into other mechanisms:
 - bbFTP, FDT (Fast Data Transfer) and bbFTP

Ingestion Related Components Harvest Tool

- Crawler-based tool for capturing and registering product metadata.
- Allows for periodic or on-demand registration of products.
- Configurable to support registration of products residing in PDS3 and PDS4 archives.
- Designed to integrate well with existing Node operations.
- Provides the first line of metadata harvesting within the system in order to facilitate tracking of and access to products.


Ingestion Related Components Registry Service

- Provides functionality for tracking, auditing, locating, and maintaining artifacts within the system.
 - Artifacts include data products, data dictionary element definitions, service descriptions and project documents.
- Provides a common implementation for registry service instances based on the Registry Reference Model effort which in turn is based on ebXML.

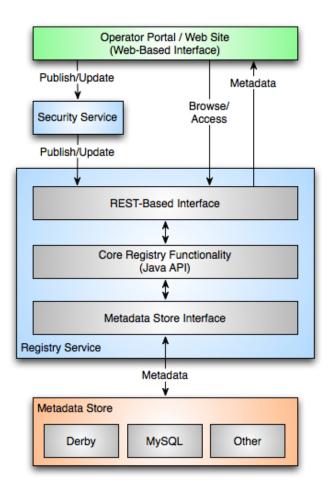
Ingestion Related Components Operator Portal and Security Service

- Operator Portal
 - A general web-based interface for managing registry policy, content and end-to-end tracking.
 - The interface is deployable for local instances of the Registry service at the Nodes.
- Security Service
 - Provides the authentication and authorization functions for the system.
 - Satisfied with an Open Source product supporting the Lightweight Directory Access Protocol (LDAP).

Ingestion Flow

System Design: Data Ingestion Update

Ingestion Flow Details


- 1. Data Provider receives data from the source (e.g., Project, Instrument Team, etc.).
- 2. Data Provider utilizes PDS provided tools to prepare the data for submission.
- 3. Data Provider submits transformed/labeled data to the Discipline Node via an agreed interface (e.g., FTP, Data Brick, etc.).
- 4. Discipline Node receives data/metadata from the Data Provider and stages it in local storage.
- 5. Discipline Node utilizes PDS tools or tools based on a common library to prepare the data for archive.
- 6. Discipline Node initiates harvesting of the archive, which registers product metadata with the Registry service. Metadata registrations are authorized by the Security service.
- 7. Metadata is replicated with the Registry service hosted at the EN.
- 8. Discipline Node manages housekeeping information and/or augments metadata for search enhancement via the Operator Portal.

Topics

- Overview and Design Process
- Ingestion Related Components and Flow
- Registry Service
- Harvested Metadata
- Deployment and Plans
- Wrap Up

Registry Architecture

- REST-based API over HTTP for registration and retrieval of metadata.
- Internals developed in Java with an API for manipulating registry objects.
- Metadata store interface allows for multiple database solutions.

Registry REST-Based API

- This interface delegates all functions involving a product:
 - <u>http://pds.nasa.gov/services/registry/extrinsics/</u>
 - GET: Retrieves a paged list of products from the registry.
 - POST: Publishes a product to the registry.
- This interface acts on a specific product (lid stands for logical identifier):
 - <u>http://pds.nasa.gov/services/registry/extrinsics/</u> logicals/{lid}/
 - GET: Retrieves the product from the registry.
 - POST: Updates the product in the registry.
 - DELETE: Removes the product from the registry.

Registry Data Model Key Classes

- Association
 - Specifies a relationship between two registered objects.
- AuditableEvent
 - Records the actions taken against a registered object.
- Classification
 - Facilitates incorporation of taxonomies.
- ExtrinsicObject
 - PDS products are derived from this class.
- Service
 - Captures service descriptions.
- Slot
 - Captures additional attributes describing a registered object.

Registry Configuration

- The data model identifies the PDS product types.
 - Identifies the common metadata elements (slots) for each of the product types.
 - Identifies the associations for each of the product types.
- The data model also captures existing PDS taxonomies (classifications).
- This information is exported in a form to facilitate Registry Service configuration.
 - Will also be utilized by the Harvest Tool and GUI.
- Allows the data model to exert some semblance of control over the contents of the registries.

Topics

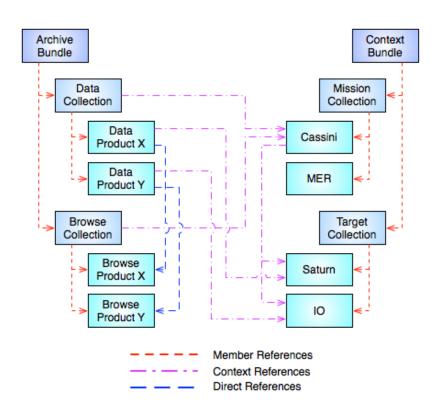
- Overview and Design Process
- Ingestion Related Components and Flow
- Registry Service
- Harvested Metadata
- Deployment and Plans
- Wrap Up

Harvested Metadata Identification Area

- The logical id and version id become the unique identifier for the product.
- Product class is used to classify the object type.
- Title becomes the display name.

<Identification_Area_Product> <logical_identifier>urn:nasa: pds:data_set.A12A-L-SWS-3- SOLAR-WIND-28S-RES-V1.0 </logical_identifier> <version_id>v1.0 </version_id> <product_class> Product_class> Product_class> </product_class> <title>APOLLO 12 ALSEP/SWS SOLAR WIND 28-SEC RESOLUTION TABLES V1.0 </title>

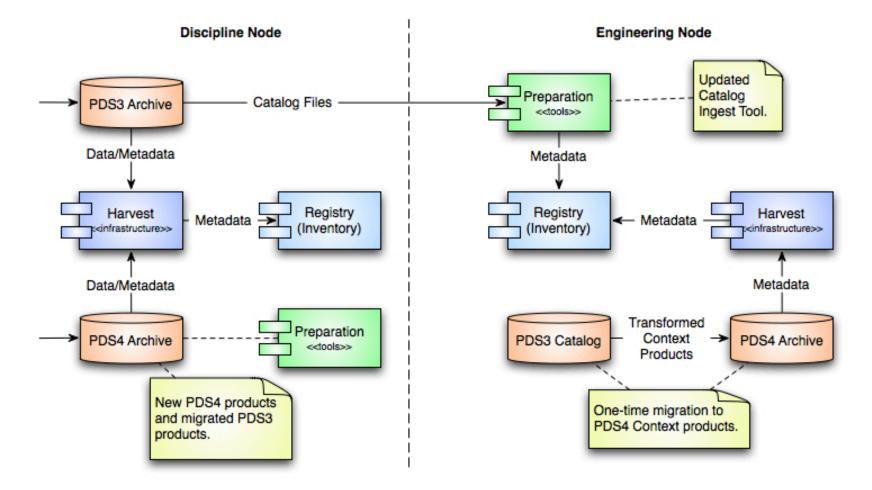
</Identification_Area_Product>


Harvested Metadata Cross Reference Area

- A reference entry becomes an association in the registry.
- Relates two registered objects with an association type.

<Cross_Reference_Area_Context> <Context_Reference_Entry> <lidvid_reference> urn:nasa:pds: investigation.APOLLO_12::1.0 </lidvid_reference> <reference_association_type> has_investigation </reference_association_type> </Context_Reference_Entry> ...

Harvested Metadata Reference Types

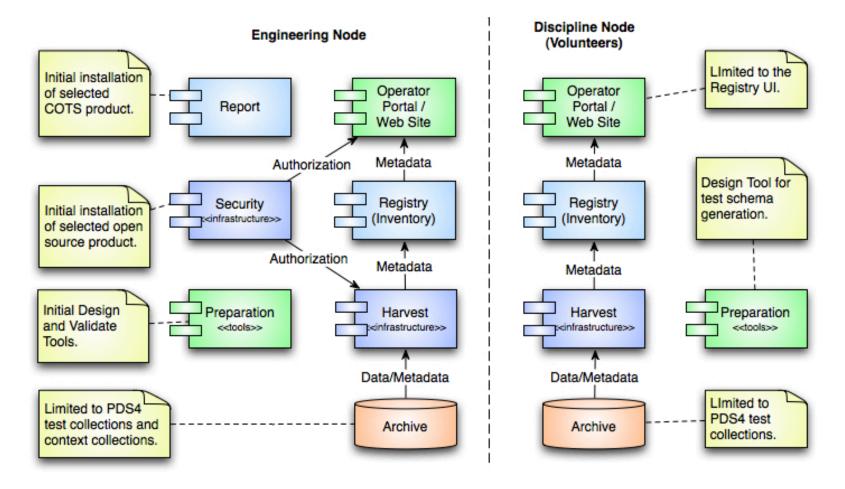

- Member
 - Represents the logical/physical tree of the archive.
- Context
 - Informational to facilitate search.
 - Realized at collection or data product level.
- Direct
 - Represents ancillary information.

Harvested Metadata Other Areas

- The Subject area contains keyword metadata and facilitates text-based search.
- The Data area can be harvested on demand.
 - Depends on the search requirements for the local registry.
- Harvest is configured to extract specific elements from the product label and place them into slots in the registry.

PDS3 Support

System Design: Data Ingestion Update


PDS3 Support Additional Details

- The Harvest Tool supports both PDS4 and PDS3 registration.
 - PDS3 support consists of converting PDS3 labels into PDS4 proxy labels.
 - Registered for tracking and reporting purposes.
 - Will be replaced when the corresponding PDS3 data set is migrated to PDS4.
- The current Catalog Ingest Tool is updated to convert the catalog files to context products and register them with the registry.

Topics

- Overview and Design Process
- Ingestion Related Components and Flow
- Registry Service
- Harvested Metadata
- Deployment and Plans
- Wrap Up

Build 1 Deployment

June 21-22, 2011

System Design: Data Ingestion Update

Build 1 Deployment Additional Details

- Intended as a prototype build for the core components.
- Deployment of the software at the Nodes was voluntary.
 - The Atmospheres Node is the only taker so far.
 - It was a good experience working out system requirements.
- The exception to voluntary Node deployment was the use of the off-the-shelf Design Tools.
- No integration was required with this build.

Preparation for Build 2

- Add support for querying slot content and for registry aggregation for the Registry Service.
- Add support for registering file objects, test PDS3 harvesting.
- Add support for bundle validation to the Validate Tool.
- Complete development of the Catalog Ingest Tool.
- Design and develop the Tracking Application.

Topics

- Overview and Design Process
- Ingestion Related Components and Flow
- Registry Service
- Harvested Metadata
- Deployment and Plans
- Wrap Up

Wrap Up

- The ingestion process and flow closely mimic existing processes at the Nodes.
- This allows us to minimize impact on current Node operations.
- The Harvest and Registry components provide the core functionality for the rest of the system to be built upon.
- Facilitates tracking, reporting and ultimately product-level search.

Questions/Comments