Data Providers Handbook

Archiving Guide to the PDS4 Data Standards

Data System Working Group Jan, 2010 Version 0.101010101

CHANGE LOG

Revision	Date	Description	Author
0.1	Mar 30, 2009	Initial draft based on information collected by the Data System Working Group.	R.Joyner
0.2	Aug 6, 2009	Updated versions of all Classes	R. Joyner
0.3	Jan 3, 2010	Updated versions of all Classes	R. Joyner

TABLE OF CONTENTS

1.0 INTRODUCTION	3
1.1 PURPOSE	
1.2 AUDIENCE	
1.3 DOCUMENT SCOPE	
1.4 DOCUMENT OVERVIEW	
1.5 APPLICABLE DOCUMENTS	
1.5.1 CONTROLLING DOCUMENTS	
1.5.2 REFERENCE DOCUMENTS	
2.0 Overview	
3.0 PDS4 concepts	
3.1 PDS4 BUILDING BLOCKS – THE PRIMARY PIECES	7
3.1.1 PDS4 BASE STORAGE STRUCTURES	
3.1.2 PDS4 OBJECT	
3.1.3 PDS4 OBJECT DESCRIPTION	، ۲ و
3.1.4 PDS4 TAGGED OBJECT	
3.1.5 PDS4 TYPES OF TAGGED OBJECTS	
3.1.6 PDS4 PRODUCT	
3.1.7 PDS4 SETS OF PRODUCTS	
3.1.8 PDS4 LABEL	
3.1.9 PDS4 XML	
3.2 THE LOGICAL ORGANIZATION	17
3.2.1 TYPES OF DATA	
3.3 ASSOCIATING ONE PIECE WITH ANOTHER	10
3.4 PACKAGING FOR DELIVERY TO THE PDS	
3.5 THE CONCEPT OF CARDINALITY	
4.0 Pds4 data representation	
4.1 PDS4 DATA STRUCTURES	
4.1 PDS4 DATA STRUCTURES 4.2 PDS4 DATA PRODUCT DESCRIPTION	20
5.0 Pds4 product Label schema	
	23
5.1 RESTRICTIONS IN TAILORING SCHEMAS 5.2 BUILDING AND USING LOCAL DATA DICTIONARIES	25
5.2 BUILDING AND USING LOCAL DATA DICTIONARIES 5.3 EXAMPLE RELATIONSHIP OF SCHEMAS TO LABELS	
	20
7.0 PDS4 DATA PRODUCT CLASSES	30
7.1 Array_Base – Homogeneous N-Dimensional Array Of Scalars	30
7.1.1 IMAGE_GRAYSCALE	30
7.2 Table_Base – Heterogeneous Repeating Record of Scalars	45
7.2.1 TABLE_CHARACTER	45
	50
APPENDIX A ACRONYMS	
APPENDIX B DEFINITION OF TERMS	
APPENDIX C DIGITAL OBJECT DESCRIPTIONS	59
APPENDIX D NON-DIGITAL OBJECT DESCRIPTIONS	72

1.0 INTRODUCTION

1.1 PURPOSE

This PDS Data Providers Handbook (DPH) serves as a guide for the preparation of PDS4 compliant data intended for submission to the Planetary Data System (PDS). This document is to be used, in conjunction with the PDS Standards Reference and the Planetary Science Data Dictionary, for preparing a data set that meets the PDS4 archive criteria.

Note: This document is currently in draft form and contains sparse content in certain sections as well as transitional verbiage to aide in the flow of the document. These issues and others will be addressed in subsequent versions of the document.

1.2 AUDIENCE

This document is intended for scientists and engineers in the planetary science community who are in the process of submitting restored or new mission data to the PDS. While this document is applicable to all such submissions, for simplicity most of the discussions are couched in terms of mission/instrument submissions.

PDS has evolved new PDS4 requirements and standards for archival quality data to ensure that the data it provides to users in the science community are complete, accurate, and easily accessible. This manual is intended for all types of data suppliers and developers working with PDS.

1.3 DOCUMENT SCOPE

The information included here addresses the requirements of the PDS4 archive standards. Throughout this document are references to Version 4.0 of the Planetary Data System Standards Reference that addresses the data preparation requirements for preparing data sets that meet PDS4 archive standards.

1.4 DOCUMENT OVERVIEW

This version of the PDS Data Providers Handbook reflects a major revision in the data preparation and submission process. The PDS4 requirements, standards and procedures presented herein reflect the most recent updates to the PDS4 architecture [1].

This document collects the most important concepts with good examples of current practice and guides the new archivist through the forest of Planetary Data System standards, mission requirements, and general good sense to an archive that is both achievable and of high quality.

This document provides examples of a small subset of the allowed possibilities. The examples illustrated are thought to be the most common and adaptable.

1.5 APPLICABLE DOCUMENTS

1.5.1 CONTROLLING DOCUMENTS

1) Planetary Data System (PDS) PDS4 Information Model Specification, Version 0.09xxxxx.

1.5.2 REFERENCE DOCUMENTS

- 1) Planetary Data System (PDS) Standards Reference, February 27, 2009, Version 3.8, JPL D-7669, Part 2.
- 2) Planetary Data System Archive Preparation Guide (APG), August 29, 2006.

2.0 OVERVIEW

PDS is in a multi-year process to develop and deploy a major modernization of its entire archive and distribution system. The result is referred to as PDS version 4, or simply, PDS4.

This document provides information to assist data suppliers in the preparation of data for archiving under the PDS4 standards. In previous versions, the Standards Reference included substantial ancillary and tutorial information. Under PDS4 the Standards Reference remains the definitive source for PDS archiving, but that document is designed strictly as a reference. Tutorial information is provided in this document and other ancillary documents.

Among the goals of the redesign of the PDS archive system embodied in PDS4 are:

- improve efficiency and reduce costs in the data submission process,
- increase the robustness and integrity of data in the archive,
- simplify the location and retrieval of data from the archive,
- enhance value added services to end users.

The key principles underlying the development of PDS4 are:

- Data visualization and analysis software change relatively frequently. Formats optimized for such software generally are not optimal for archiving.
- Conversely, data structures optimized for archiving should be simple, rigidly controlled, and projected to be stable for extended periods. Such structures are in general less convenient for data visualization and analysis.
- Documents and software should be treated the same as any other data.
- The data system should be able to identify and retrieve individual objects and to identify all of the relevant associated with the object.
- The approach PDS has taken is to archive data in a few highly constrained, simple data structures which are projected to be stable for decades. Over the long term this will benefit PDS, and equally importantly data submitters, who will be able to access easy to use standards and to design stable pipelines.

• To provide broad support for end user communities, PDS will enhanced search capabilities and will develop software to convert between archive formats and current, widely used visualization and analysis formats.

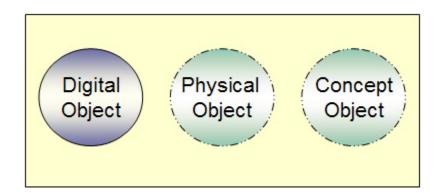
3.0 PDS4 CONCEPTS

This section introduces key terms and concepts as they are used within the PDS. The internal meanings of several key phrases and/or concepts are presented to facilitate a clear and concise communication between the PDS and the archivist. Appendix B provides more technical definitions.

3.1 PDS4 BUILDING BLOCKS – THE PRIMARY PIECES

3.1.1 PDS4 BASE STORAGE STRUCTURES

PDS uses four base storage structures. The four structures are:


- Array_Base Homogeneous N-dimensional array of scalars
- Table_Base Heterogeneous repeating record of scalars
- Unencoded Stream Base
- Encoded Stream Base

These are described in more detail later in this document. These structures are simple, stable structures which are rigidly defined by PDS. The key point is that everything that goes into the archive must be stored using these structures.

3.1.2 PDS4 OBJECT

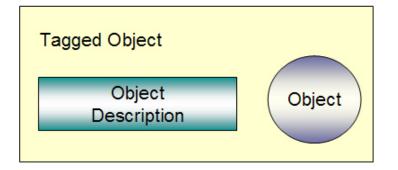
Object:

Can be either a Digital Object or a Physical Object or a Conceptual Object.

An example of a Digital Object is the sequence of bits that comprise a Table or an Image or a Document or a piece of Software. For an Image, the object is the image itself (exclusive of any associated items such as a header or histogram table each of which is also an object).

An example of a Physical Object is a spacecraft or moon rock. An example of a Conceptual Object is a Mission or Node. These latter two types of Objects are "intrinsic" in the sense that they exist and are in need of being described in such a manner that they can be referenced and associated with objects in the archive. Clearly, neither Physical or Conceptual Objects will actually be stored in the archive.

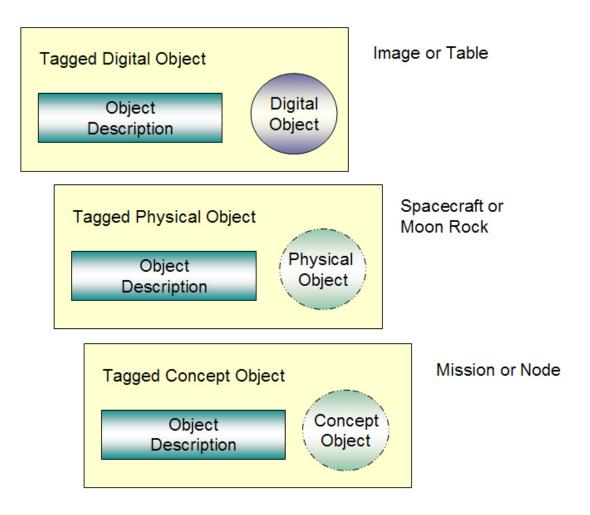
3.1.3 PDS4 OBJECT DESCRIPTION


Object Description:

The Object Description is the collection of metadata (information about the data) that maps an Object into more meaningful concepts (e.g., Image, Table, Mission, Spacecraft). For an Image such metadata would include information such as the number of lines and samples, the filter used, time of observation, etc. The Object Description is expressed in XML as part of a PDS Label.

3.1.4 PDS4 TAGGED OBJECT

Tagged Object:


An Object Description and an associated Object form a Tagged Object.

3.1.5 PDS4 TYPES OF TAGGED OBJECTS

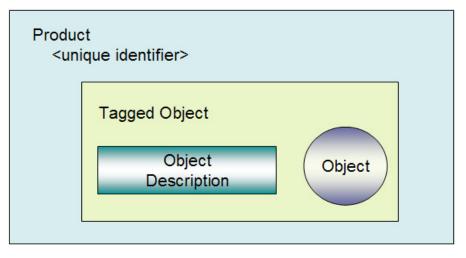
Types of Tagged Objects:

There are three types of Tagged Objects. The type of Tagged Object being described is dependent upon which type of Object is being described - Physical Object, or a Digital Object or a Conceptual Object.

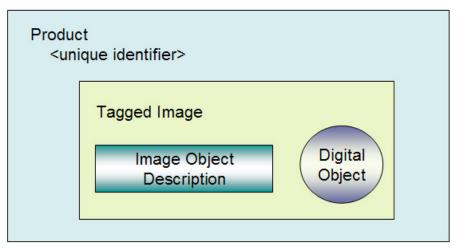
3.1.6 PDS4 PRODUCT

Product:

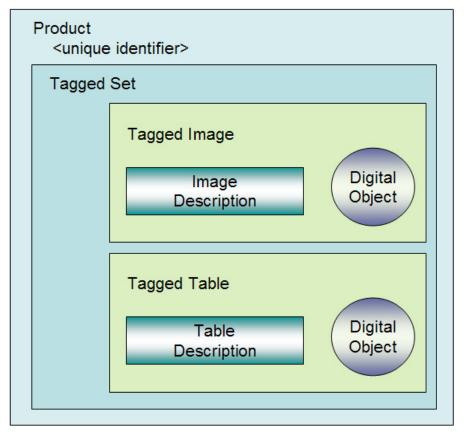
A Product consists of Identification Information and one or more associated Tagged Object(s). Products are "identifiable". An identifiable has a globally unique immutable identifier. The globally immutable identifier permits the "product" to be located and retrieved by a single query against any federated registry system, of which PDS4 is one.

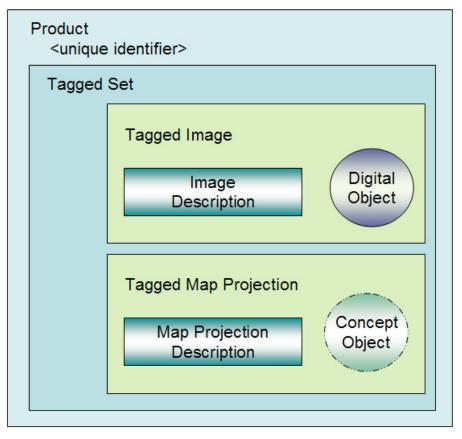

Products come in a couple of different types:

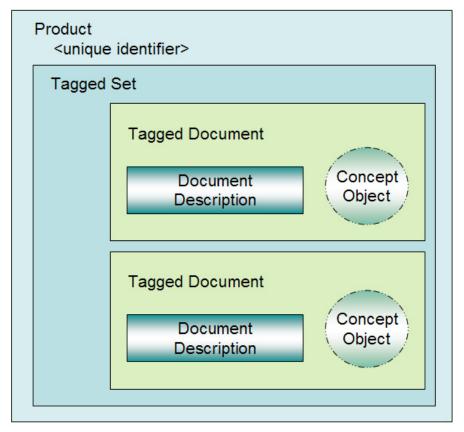
- Simple Product
- Compound Product


The following diagrams illustrate how products can be described. The following are only representative of possible types of product that can be described and are not encompassing of all possible types of products that can be described within a PDS archive:

- Simple Product
- Simple Image Product
- Compound Product
- Compound Image Product
- Compound Document Product
- Sets of Products

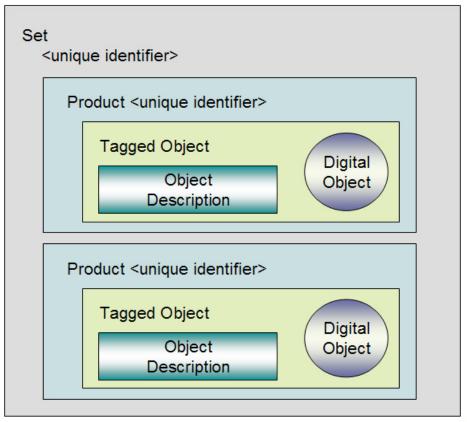

Simple Product


Simple Image Product



Compound Product

Compound Image Product


Compound Document Product

3.1.7 PDS4 SETS OF PRODUCTS

Sets of Products:

Products can be grouped into Sets of Products.

Set of Products

3.1.8 PDS4 LABEL

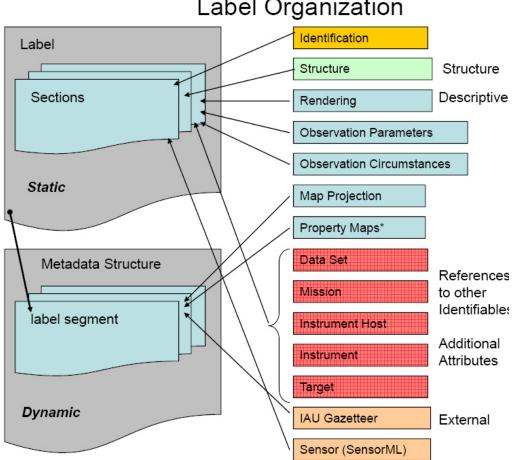
Label:

The PDS label contains all of the metadata associated with an object including structural parameters associated with the relevant base storage structure, and the full object description for each object in the data product.

3.1.9 PDS4 XML

XML:

PDS uses XML as the underlying language for the data system. It is beyond the scope of this document to provide a full tutorial for XML. PDS uses XML to generate a generic XML schema for each object class. Each schema is generated from the PDS governing documents to ensure their use will produce PDS4 compliant products. The use of schemas and XML to generate labels is outlined later in this document.


For a simple example of some of these concepts, consider a FITS image with a single ASCII table extension. The FITS image file will have four pieces, the primary header describing the image, the image, a secondary header describing the table, and the table.

Under PDS4, each of the four pieces is an object. The PDS data product will consist of the FITS image file and a PDS4 label with four object descriptions.

Each of the four objects conforms to one of the base storage structures. The headers are archived as Unencoded Byte Streams, the image as an Array_Base, and the ASCII table as a Table_Base.

3.2 THE LOGICAL ORGANIZATION

TBD

Label Organization

3.2.1 TYPES OF DATA

TBD – include the various types of dataType classes and where they are described in detail (similar to Appendix C in StdRef)

3.3 ASSOCIATING ONE PIECE WITH ANOTHER

TBD

3.4 PACKAGING FOR DELIVERY TO THE PDS

TBD

3.5 THE CONCEPT OF CARDINALITY

CARDINALITY:

Cardinality of a set is a measure of the "number of elements" in the set. For example, the set $A = \{1,2,3\}$ contains 3 elements, and therefore A has a cardinality of 3.

PDS3 adopted the use of "required" and "optional" to specify the relationship between sets of objects and elements. Object-A required Object-B but could optionally include Object-C. In turn, Object-A required Element-A and Element-B but could optionally include Element-D or Element-E).

PDS4 has elected to adopt the concept of "cardinality" which allows PDS to specify the above releationships at a lower level of granularity. Cardinality allows the parent-child relationships to be defined more acutely.

Through out this document are diagrams that depict parent-child relationships using the cardinality nomenclature. Table 3-1 provides a description of the cardinality nomenclature used within the diagrams in this document.

Cardinality	Desciption
01	Within the context of the parent, the child may optionally exist as a single non- repeating instance
0*	Within the context of the parent, the child may optionally exist as an ubounded repeating instance
1	Within the context of the parent, the child must exist once and only once
1*	Within the context of the parent, the child must exist once, but may exist an unbounded number of times
2	Within the context of the parent, the child must exist twice and only twice
2*	Within the context of the parent, the child must exist twice, but may exist an unbounded number of times

Figure 3-1. Cardinality Nomenclature

The following is an example diagram that illustrates the parent-child relationship using cardinality nomenclature.

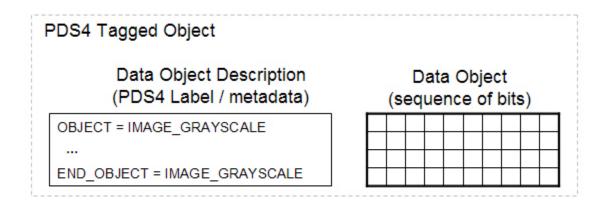
PROPERTY_MAP	01
LOCAL IDENTIFIER	1
COMMENT	01
NAMESPACE_ID	1
PROPERTY_MAP_ENTRY PROPERTY_NAME PROPERTY_VALUE	1* 1 1*

With respect to the above example:

- 1. The parent class, the PROPERTY_MAP class, is comprised of a single subclass, the PROPERTY_MAP_ENTRY class.
- 2. The PROPERTY_MAP_ENTRY class must exist once but may exist many times within the context of the parent PROPERTY_MAP class.
- 3. The parent PROPERTY_MAP class is comprised of two required nonrepeating data elements (e.g., LOCAL_IDENTIFIER and NAMESPACE_ID) and a single optional non-repeating data element (e.g., COMMENT).
- 4. The PROPERTY_MAP_ENTRY class is comprised of a single required nonrepeating data element (e.g., PROPERTY_NAME) and a single required repeating data element (e.g., PROPERTY_VALUE).

4.0 PDS4 DATA REPRESENTATION

Data can be an elusive concept. Data may exist in some storage format on some disk somewhere, on paper somewhere else, in active memory on some server, or transmitted along some wire between two computers. All these can still represent the same data. That is, there is an important distinction to be made between the data and its representation. The data consist of numbers: abstract entities that usually represent measurements of something, somewhere. Data also consist of the relationships between those numbers, as when one number defines a time at which some quantity was measured.


The abstract existence of data is in contrast to its concrete representation, which is how the data is viewed, manipulated, and stored. Data can be stored as BCD numbers in a file on a disk, or as twos-complement integers in the memory of some computer, or as numbers printed on a page. It can be stored in netCDF, HDF, JGOFS, a relational database and any number of other digital storage forms.

The PDS specifies a particular representation of data, to be used in archiving that data. This "archival" representation distinguishes it from the representations used in some computer's memory (i.e., how the data is stored or represented on either the sending or receiving computer; or the transmission format used to communicate between the two servers).

For this document, we identify two special types of objects -- the "data object" and the "data object description." The data object contains "data," and (by itself) is not otherwise constrained. The data object description contains information about another object, such as a data object. By linking a data object with a data object description, we create a pair which includes both the data and enough information that we can start to read and interpret the bits --- a PDS Tagged Object.

A data object description can (and often does) exist without being physically accompanied by another object. The object it describes may not be physical (e.g., a space mission which, although it has physical components, is itself a concept) or it may not be practical to include the physical object (e.g., the planet Saturn).

Note that within the context of this document, of three types of data objects (digital, conceptual, and physical), we will only address "digital data objects".

At its simplest, a PDS4 Tagged Object consists of a PDS4 Data Object Description (e.g., a PDS4 Label) and a "digital" Data Object (e.g., sequence of bits) that are described by the metadata resident in the PDS4 Label. The Data Object Description describes both the physical and logical structure of the referenced Data Object.

4.1 PDS4 DATA STRUCTURES

PDS4 defined four new basic types of data structures for the purposes of describing data objects. All current PDS4 digital object classes fall into one of the four basic data structures.

1. Array_Base - Homogeneous N-dimensional array of scalars

Homogeneous N-dimensional array of scalars -- describes a collection of "items" of the same type. Every "item" takes up the same size block of memory, and all blocks are interpreted in exactly the same way (i.e., the number of "items" in an array is fixed by that specified by the size of its dimension). How each "item" in the array is to be interpreted is specified by a separate data-type class, of which one is associated with every array (i.e., the "items" in an array are represented by an identical storage format – MSB_INTEGER_4_BYTE, MSB_INTEGER_2_BYTE, etc).

An instance of the Array_Base class consists of a collection of contiguous onedimensional segments of memory (owned by the array), combined with an indexing scheme that maps the "items". How many bytes in each "item" and how the bytes are interpreted is defined by the data-type class associated with the array (i.e., basic constraints on storage order, element types, and maximum number and length of axes are defined by the data-type class).

Example Classes:

- Image_Grayscale
- 3D Image

2. Table_Base - Heterogeneous repeating record of scalars

Heterogeneous repeating record of scalars -- describes a collection of "items" where the "items" characteristics may vary within a row of "items". Every column of "items" takes up the same size block of memory, and all blocks are interpreted in exactly the same way (i.e., the number of "items" in an array is fixed by that specified by the size of its dimension). How each "item" in the table is to be interpreted is specified by a separate data-type class, of which one is associated with every array (i.e., the "items" in an array are represented by various storage formats – ascii_integer, integer, ascii_real, real, etc).. The term record is used here to denote a data structure whose elements have heterogeneous data types.

An instance of the Table_Base class consists of a collection of contiguous onedimensional segments of memory (owned by the table), combined with an indexing scheme that maps the "items". How many "items" in each row, how many bytes in each "item" and how the bytes are interpreted is defined by the data-type class associated with the table (i.e., basic constraints on storage order, element types, and number and length of rows are defined by the data-type class).

Example Classes:

- Binary table
- Character table
- 3. Unencoded Stream Base

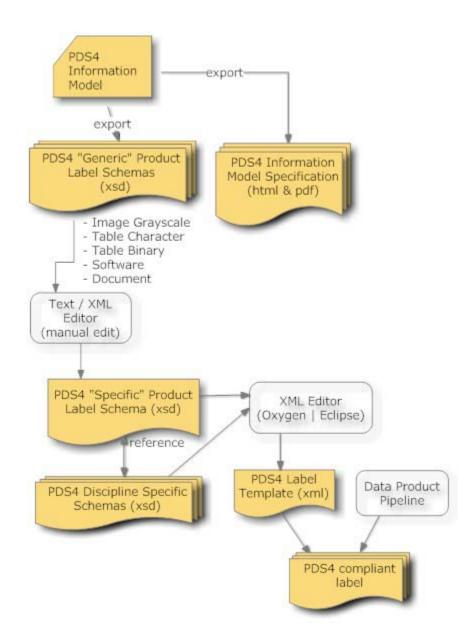
Unencoded stream base -- describes a collection of "items" where the "items" are interpreted without any character encoding (e.g., ASCII character set).

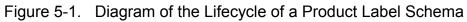
An instance of the Unencoded_Stream_Base class consists of a contiguous stream of ASCII characters, combined with a field_delimiter scheme that maps the "items". How many "items" in each record, how the bytes are interpreted is defined by the data-type class associated with the unencoded_stream_base (i.e., basic constraints on number of fields in a record, element types, and the number of records are defined by the data-type class).

Example Classes:

- CSV_file
- Header
- 4. Encoded Stream Base

Encoded stream base -- describes a collection of "items" where the "items" are interpreted in accordance with a recognized International Standard (e.g., JPEG_2000).


Example Classes: - SPICE_Kernel


4.2 PDS4 DATA PRODUCT DESCRIPTION

TBD

5.0 PDS4 PRODUCT LABEL SCHEMA

This section introduces the concept of a product label schema and how a schema is used in the process of designing, generating, and validating the products in your archive.

Once data products have been identified for archiving, the initial step of designing a data product should have been defined by science requirements. In

most cases, the structure of the data was probably determined before your instrument was selected for the mission. The structure of the underlying data is typically obvious (e.g., table or image structure).

- TABLE a uniform collection of ROWs and COLUMNs stored in either ASCII or binary format. ASCII forms are easily imported into a variety of spreadsheet and database applications.
- IMAGE a two dimensional array of spatially organized measurements (LINES and SAMPLES). Many public domain image display programs can read PDS Image objects.

PDS has created sets of base product label schemas that address all of the envisioned PDS4 structures. Your first step is to select, from the set of PDS4 "Generic" Product Label Schemas, the schema that most closely represents your data product (e.g., Image Grayscale, Table Character, Table Binary, etc).

The next step is to review the "Generic" Product Label Schema and to tailor this schema to be more specific to the product that you want to archive with the PDS. The process by which the "Generic" schema is tailored to become the "Specific" schema is, at least at this point, a manual process. Expect several iterations and use the assistance of your PDS representative.

Note that both the "Generic" and "Specific" schemas are in fact an XML Schema; aka an XML Schema Document (XSD) – a document written in the XML schema language. Like all XML schema languages, XSD can be used to express a set of rules to which an XML document must conform in order to be considered "valid" according to that schema. XSD was also designed with the intent that determination of a document's validity would produce a collection of information adhering to specific data types.

The "Specific" schema represents the overall structure and format of the archived data product. The "Specific" schema defines, in the strictest sense, the greatest latitude permissible in the validation of the product label to ensure PDS compliance.

The "Specific" schema is also the building block upon which a label template can be derived. Most XML Editors provide a capability to "export / create" an XML label from an XSD. This label template when used in conjunction with your dataproduct pipeline will generate the individual data-product labels. The PDS can offer suggestions for automating the process of generating labels; including, the use of PDS tools. Whether they use the term or not, instrument teams will need to develop a 'pipeline' for handling mission data. The pipeline begins with data collection (as from a telemetry stream) and ends with generation of standard products. Except for a few ancillary documents, the pipeline will provide most of the products you will need for your archive. Even if you fully exploit the pipeline, there will be validation steps that will be unique to the archive. Validating the data product labels is where the data product schemas become invaluable. The use of XML in data product labels and in schemas provides an expedient method by which your pipeline can ensure your product labels are PDS compliant. The PDS can offer suggestions for automating the validation process; including, the use of PDS tools.

PDS has tools that can assist you in data validation. (Note: Consult your PDS rep to obtain the latest versions of validation tools and for assistance in effective use of them.) For example, there are tools that scan each directory to check that you have all of the expected pieces in place. Other tools provide convenient ways for you to check that individual products meet PDS archiving Standards while you are debugging the software that creates them. After the initial products have been validated, you will need to validate the pipeline software after each software upgrade and make occasional spot checks during production.

5.1 RESTRICTIONS IN TAILORING SCHEMAS TBD

5.2 BUILDING AND USING LOCAL DATA DICTIONARIES TBD

5.3 EXAMPLE RELATIONSHIP OF SCHEMAS TO LABELS

This section illustrates the lifecycle process of the "generic" and "specific" product label schemas and how they relate to the label template and the resulting product labels. The above is demonstrated by using an example PDS3 data product.

The example product is a simple ASCII table that is currently in the PDS3 archive.

• MGS-M-RSS-5-TPS-V1.0: A radio science data set that seems to consist of well-behaved ASCII tables with little or no additional keywords beyond those in a basic label. There are two tables in each label, but both tables are in the same file (one is a single line of header parameters).

The files that describe both the PDS3 and the PDS4 data products can be found at:

- PDS3 ODL Label: <u>http://tbd</u>
- PDS3 data product: <u>http://tbd</u>
- PDS4 XML Label: : <u>http://tbd</u>
- PDS4 XML Label template: : <u>http://tbd</u>
- PDS4 Generic Schema: : <u>http://tbd</u>
- PDS4 Specific Product Schema: : <u>http://tbd</u>
- PDS4 Specific Data_Set Schema: : <u>http://tbd</u>

Note that at this time, the above examples are out of date with the current information model and therefore do not provide an exact representation of the current schemas.

Step #1: Select, from the set of PDS4 "Generic" Product Label Schemas, the schema that most closely represents your data product (e.g., Image Grayscale, Table Character, Table Binary, etc)

Step #2: Download the "Generic" Product Label Schema from:

http://pds/schema/pds4/common/

Step #3: Make a copy of the "Generic" Product Label Schema and save the copy as the "Specific" Product Label Schema.

Step #4: Examine the as yet unmodified "Specific" Product Label Schema in your favorite XML editor (e.g., Oxygen or Eclipse). You may also examine the schema in a text editor (e.g., UltraEdit, BBEdit, etc). Ensure that the XML is fully formed (i.e., the XML editor will validate the XML and will have an indicator (which is usually a green or red box) that indicates if errors are present in the XML).

Note that if there are errors in the XML schema, contact your PDS representative for further instructions on how to resolve any discrepancies.

Step #5: Use the editor to tailor this schema to be more specific to the product that you want to archive with the PDS. The "Specific" schema represents the overall structure and format of the archived data product. The "Specific" schema defines, in the strictest sense, the greatest latitude permissible in the validation of the product label to ensure PDS compliance.

Examples of types of "edits / restrictions" that might be appropriate with respect to the specific schema; include:

1) Restrict the set of all possible target names to a single value (e.g., MARS).

- Restrict the instances in the File_Area_Type to a single reference to the type of file being described (i.e., in our example we are describing a character table having fixed length records – so we would remove all instances except the reference to File_Character_Fixed).
- 3) As our example table product does not have any "Statistics", remove all references to Object_Statistics_Type
- 4) As our example table product does not have any "Special Constants", remove all references to Special_Constants_Type.

Expect several iterations and use the assistance of your PDS representative.

Step #6: Save the edited / tailored "Specific" Product Label Schema.

Step #7: Most XML Editors provide a capability to "export / create" an XML label from an XSD. You will want to use this feature to export / create a sample label (which is an XML file) from the "Specific" schema (which is an XSD file). Save the sample label.

Step #8: Examine the sample label in either your favorite XML editor or text editor. Ensure that the XML is fully formed (i.e., the XML editor will validate the XML and will have an indicator (which is usually a green or red box) that indicates if errors are present in the XML. As the sample label was generated by the XML editor, there shouldn't be any errors. Contact your PDS rep to resolve any discrepancies.

Step #9: Now that you have a "valid" XSD and sample label, we can proceed with creating a data product pipeline that will pump out gazillions of PDS compliant labels.

Validating the data product labels is where the data product schemas become invaluable. The use of XML in data product labels and in schemas provides an expedient method by which your pipeline can ensure your product labels are PDS compliant. The PDS can offer suggestions for automating the validation process; including, the use of PDS tools.

6.0 PDS4 CONCEPT OF "IDENTIFIERS"

PDS4 has defined an "identifier" concept whereby "objects" can be referenced either internally or externally. Each identified "object" is termed an "identifiable". An identifiable has a globally unique immutable identifier. The globally immutable identifier permits the "object" to be located and retrieved by a single query against any federated registry system, of which PDS4 is one.

Examples of "Identifiers" include all types of Products and sets of Products.

- **PUID** Unique, immutable identifier for an object; e.g. URN
- **Identifier** PDS wide unique identifier for an object;
- Logical Identifier Unique identifier for the set of all versions of an object; When provided a logical identifier, a service should return, by request, either all versions or the latest version of the object. This is probably the PDS identifier minus any version.
- **Title** (aka Label and Name) The string (name) displayed to the user when this object is listed in a GUI or report. Not necessarily unique.
- Alternative All known names for this object, past and current.

The following illustrates the "Identifiers" and the associated cardinality that comprise the IDENTIFICATION_AREA of a PDS4 label.

IDENTIFICATION_AREA	1
PUID	1
IDENTIFICATION_AREA_DATA_SET_ID	1
PRODUCT_ID	1
VERSION_ID	1
TITLE	1
CREATION_TIME	1
ALTERNATIVE	01
LOGICAL_IDENTIFIER	1
-	

The primary function of the IDENTIFICATION_AREA of the label is to explicitly specify the identity of the "object" so that the "object" can be located and retrieved globally by a single query against any federated registry system, of which PDS4 is one

The following is an example of an IDENTIFICATION_AREA for an IMAGE_GRAYSCALE object.

```
<Identification_Area>
    <puid>
        URN:NASA:PDS:MPFL-M-IMP-2-EDR-V1.0:PDS4_IMG_IMAGE_GRAYSCALE_ID:V1.0
        </puid>
        <Identification_Area_data_set_id>
            MPFL-M-IMP-2-EDR-V1.0
        </identification_Area_data_set_id>
            vproduct_id>IMP_EDR-1246943630-REGULAR-0074051101</product_id>
            version_id>1.0</version_id>
            vtitle>MARS_PATHFINDER_LANDER_Experiment</title>
            <creation_time>1998-07-14T00:36:08.000</creation_time>
            <logical_identifier>
            URN:NASA:PDS:MPFL-M-IMP-2-EDR-V1.0:PDS4_IMG_IMAGE_GRAYSCALE_ID
            </logical_identifier>
            </logi
```

Once the above information has been registered with the PDS, in theory, the "object" can be located and retrieved globally by a single query against the PDS4 federated registry system.

Note that the above conventions for naming "Identifiers" is simply for the purpose of illustrating how to uniquely name "objects". The actual naming convention will be fully documented at a later time.

7.0 PDS4 DATA PRODUCT CLASSES

7.1 Array_Base – Homogeneous N-Dimensional Array Of Scalars

7.1.1 IMAGE_GRAYSCALE

This section describes the IMAGE_GRAYSCALE extension of the PDS4 Array_Base, (i.e., Homogeneous N-dimensional array of Scalars) class where a contiguous stream of BINARY data, assembled as a two dimensional data structure, maps the "items" contained in a IMAGE_GRAYSCALE file.

This section identifies a mapping of the PDS3 IMAGE object to the PDS4 IMAGE_GRAYSCALE file construct and demonstrates how the byte stream (e.g., sequence of bits) can be described by both a PDS3 label and a PDS4 label.

7.1.1.1 IMAGE_GRAYSCALE Class Description and Schema

Figure 7.1.1-1 depicts a representation of the PDS4 IMAGE_GRAYSCALE class and the associated parent and child classes. The figure additionally lists the cardinality of each parent / child class.

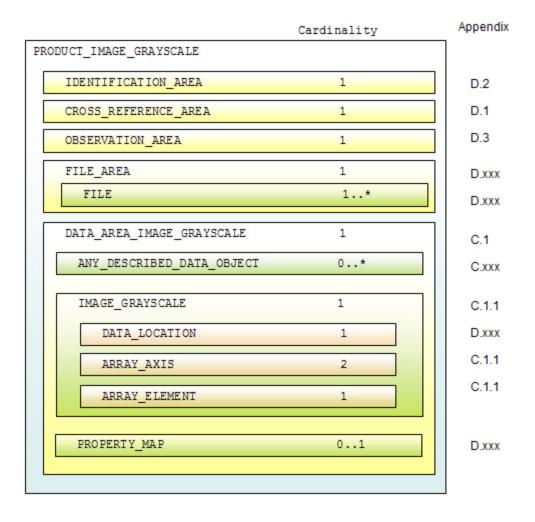


Figure 7.1.1-1. Diagram of the IMAGE GRAYSCALE Schema

From Figure 7.1.1-1, the overall structure of the IMAGE_GRAYSCALE data product description can be easily discerned and understood. A detailed set of diagrams of the composite classes that comprise the IMAGE_GRAYSCALE data product description can be found in Appendix C and Appendix D.

7.1.1.2 IMAGE_GRAYSCALE Data Product Byte Stream

Figure 7.1.1-2 depicts a representation an IMAGE_GRAYSCALE byte-stream. The first two rows of the diagram are for the purposes of illustrating the byte positions relative to the IMAGE fields and would not normally be contained in a data object description file. The remaining twenty+ rows illustrate a typical IMAGE_GRAYSCALE data object description, where the data object fields are homogeneous in fixed-width ASCII across the rows in the file.

With respect to the data object:

- 1. There are 248 rows (lines) of data (of which 240+ rows have been omitted from the diagram for ease of reading)
- 2. There are 256 fields (samples) in each row / record in this example file (of which 240+ have been omitted from the diagram for ease of reading)
- 3. Each element is identical in type and represented by an identical storage format across all rows in this example file.
- 4. Each field is comprised of BINARY data formatted as 2-byte msb unsigned integers.
- 5. There are 512 bytes in each row / record in this example data object file.

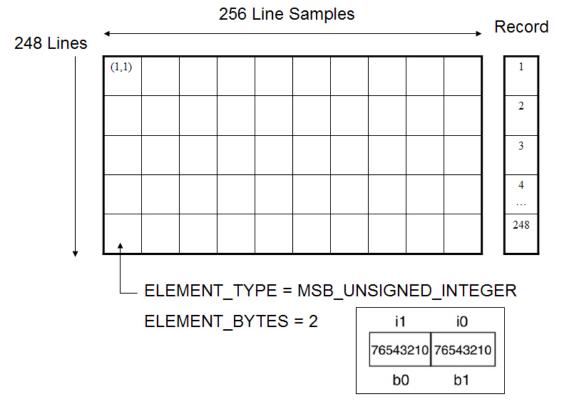


Figure 7.1.1-2. Diagram of the IMAGE_GRAYSCALE Byte Stream

Figure 7.1.1-3. Image as represented by IMAGE_GRAYSCALE Byte Stream

Figure 7.1.1-2 and Figure 7.1.1-3 depict the above IMAGE_GRAYSCALE bytestream as it would be represented as a 2-dimensional array. This representation is helpful in understanding how the data object fields are represented in the data object description (e.g., PDS4 product label). Specifically that the IMAGE_GRAYSCALE is comprised of two axes each of which have specific attributes that both identify and define the structure of the data object:

AXIS_NAME	= ("LINE", "SAMPLE")
NUMBER_OF_AXES	= 2
AXES_ORDER	= FAST2SLOW
AXIS_LENGTH	= (248, 256)
AXIS_SCALE_TYPE	= ("N/A", "N/A")
AXIS_UNIT	= ("N/A", "N/A")

With respect to the above example, the axis identified first varies the fastest (i.e., "first subscript fastest" is the default).

Each of the two axes is further comprised of a set of homogeneous fields each identical in type, format, and structure:

ELEMENT BYTES	=	2
ELEMENT_OFFSET	=	"N/A"
ELEMENT SCALING FA	ACTOR =	"N/A"
ELEMENT_TYPE	=	MSB_UNSIGNED_INTEGER
ELEMENT_UNIT	=	"DATA NUMBER

7.1.1.3 IMAGE_GRAYSCALE Label Scheme

This section depicts how the IMAGE_GRAYSCALE byte-scheme, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 IMAGE_GRAYSCALE class is the successor to the PDS3 IMAGE object.

The files that describe both the PDS3 and the PDS4 data products described within this section can be found at:

- PDS3 ODL Label: http://tbd
- PDS3 data product: <u>http://tbd</u>
- PDS4 XML Label: : <u>http://tbd</u>
- PDS4 XML Label template: : <u>http://tbd</u>
- PDS4 Generic Schema: : <u>http://tbd</u>
- PDS4 Specific Product Schema: : <u>http://tbd</u>
- PDS4 Specific "other" Schema(s): : <u>http://tbd</u>

7.1.1.3.1 PDS3 IMAGE_GRAYSCALE Label Scheme

The data product depicted in Figure 7.1.1-2 could be described in PDS3 by use of the IMAGE object:

PDS_VERSION_ID	= PDS3
/* FILE CHARACTERISTICS */	
RECORD_TYPE RECORD_BYTES FILE_RECORDS	= FIXED_LENGTH = 512 = 270
/* POINTERS TO DATA OBJECTS *,	/
^IMAGE	= "1943630R.RAW"
/* IDENTIFICATION DATA ELEMENT	IS */
DATA_SET_ID DATA_SET_NAME	<pre>= "MPFL-M-IMP-2-EDR-V1.0" = "MPF LANDER MARS IMAGER FOR MARS PATHFINDER 2 EDR V1.0"</pre>
	<pre>= "MIPL OF JPL" = "ALLAN J. RUNKLE" = "MULTIMISSION IMAGE PROCESSING LABORATORY, JET PROPULSION LAB"</pre>
IMAGE_ID COMMAND_SEQUENCE_NUMBER	<pre>= "IMP_EDR-1246943630-REGULAR-0074051101" = 74051101 = 74 = REGULAR = BOTH = "MARS PATHFINDER" = "MARS PATHFINDER"</pre>

INSTRUMENT_NAME = "IMAGER FOR MARS PATHFINDER" INSTRUMENT_ID = "IMP" TARGET_NAME = "MARS" OBSERVATION_NAME = "FILTER_5_IN_4_TIERS_FOURTH_Q_PAN.3CMD" IMAGE_TIME = 1997-07-07T05:13:42.763Z PLANET_DAY_NUMBER = 3 MPF_LOCAL_TIME = 13:39:12 SPACECRAFT_CLOCK_START_COUNT = 1246642620

 SPACECRAFT_CLOCK_START_COUNT
 = 1246943630

 EARTH_RECEIVED_START_TIME
 = 1997-07-07T23:48:33.442Z

 EARTH_RECEIVED_STOP_TIME
 = 1997-07-07T23:48:51.766Z

 PRODUCT_CREATION_TIME
 = 1998-07-14T00:36:08.000Z

 /* DESCRIPTIVE DATA ELEMENTS */ EXPECTED_PACKETS = 17 RECEIVED_PACKETS = 17 APPLICATION_PACKET_ID = 34 APPLICATION_PACKET_NAME = "SCI_IMG_3" EXPOSURE_DURATION = 46.0000 EXPOSURE_TYPE = AUTO EXPOSURE_COUNT = 3 AUTO_EXPOSURE_DATA_CUT = 3000 AUTO_EXPOSURE_PIXEL_FRACTION = 1.0000 ERROR PIXELS = 0 _PIXEL_FRACTION = 0 = "L670_R670" ERROR PIXELS FILTER NAME FILTER_NUMBER FILTER_NUMBER= 5INSTRUMENT_TEMPERATURE= (-12.2836, -12.0856)INSTRUMENT_TEMPERATURE_COUNT= (162, 161)INSTRUMENT_DEPLOYMENT_STATE= "DEPLOYED"DETECTOR_PIXEL_HEIGHT= 23.0000DETECTOR_PIXEL_WIDTH= 23.0000SOURCE_PRODUCT_ID= "SEQ_S0074E_IMPEK"SOFTWARE_NAME= "MPFTELEMPROC_IMP"SOFTWARE_VERSION_ID= "V1.24.46"PROCESSING_HISTORY_TEXT= "CODMAC LEVEL 1 TO LEVEL 2 CONVERSIONVIA_JPL/MIPL_MPFTELEMPROC" = 5 VIA JPL/MIPL MPFTELEMPROC" /* GEOMETRY DATA ELEMENTS */ INSTRUMENT_AZIMUTH = 265.3520 AZIMUTH_FOV = 14.0032 AZIMUTH_MOTOR_CLICKS = 551 INSTRUMENT_AZIMUTH_METHOD = "TELEMETRY" INSTRUMENT_ELEVATION = -43.0955 ELEVATION_FOV = 13.5656 ELEVATION_MOTOR_CLICKS = 96 INSTRUMENT_ELEVATION_MERIOD = "TELEMETRY" INSTRUMENT_ELEVATION_METHOD = "TELEMETRY" SURFACE_BASED_INST_AZIMUTH = 61.6981 SURFACE_BASED_INST_ELEVATION = -45.7609 SURFACE_BASED_INST_METHOD = "L_FRAME-QUATERNION" POSITIVE_ELEVATION_DIRECTION = UP = 262.8440 SOLAR AZIMUTH SOLAR ELEVATION = 65.8379 LANDER SURFACE QUATERNION = (0.2102, -0.0146, -0.0293, 0.9771)/* IMP FLIGHT SOFTWARE COMMAND DATA ELEMENTS */ COMMAND NAME = "IMP IMAGE AZ EL" = "This is the image taken by the IMP COMMAND DESC Using absolute azimuth and elevation as the coordinate system" TLM_CMD_DISCREPANCY_FLAG = FALSE DOWNLOAD TYPE = IM

```
DARK CURRENT DOWNLOAD FLAG = "NULL"
  DARK CURRENT CORRECTION FLAG = FALSE
 FLAT_FIELD_CORRECTION_FLAG = FALSE
BAD_PIXEL_REPLACEMENT_FLAG = TRUE
 SHUTTER EFFECT_CORRECTION_FLAG = FALSE
 SQRT_COMPRESSION_FLAG = FALSE
  /* COMPRESSION DATA ELEMENTS */
INST_CMPRS_BLK_SIZE = (8, 8)
INST_CMPRS_BLOCKS = 992
INST_CMPRS_MODE = 8
INST_CMPRS_PARAM = 250
INST_CMPRS_QUALITY = 250
INST_CMPRS_QUANTZ_TBL_ID = "INTERNAL_0"
INST_CMPRS_QUANTZ_TYPE = TABULAR
INST_CMPRS_SYNC_BLKS = 1024
INST_CMPRS_NAME = "JPEG DISCRETE COSINE TRANSFORM (DCT);
ARITHMETIC/RATIO/LCT"
INST_CMPRS_RATE = 2.0187
INST_CMPRS_RATE = 5.9446
PIXEL_AVERAGING_HEIGHT = 1
PIXEL_AVERAGING_WIDTH = 1
RICE_START_OPTION = -1
RICE_OPTION_VALUE = -1
SQRT_MINIMUM_PIXEL = 0
SQRT_MAXIMUM_PIXEL = 0
  /* IMAGE OBJECT DATA ELEMENTS */
   DBJECT = IMAGE
INTERCHANGE_FORMAT = BINARY
LINES = 248
LINE_SAMPLES = 256
BANDS = 1
SAMPLE_TYPE = MSB_UNSIGNED_INTEGER
SAMPLE_BITS = 16
SAMPLE_BIT_MASK = 2#0000111111111111
MAXIMUM = 4095
MEAN = 1385.3000
MEDIAN = 1385.3000
MEDIAN = 894
MINIMUM = 145
STANDARD_DEVIATION = 538.0290
FIRST_LINE = 3
FIRST_LINE_SAMPLE = 1
CHECKSUM = 8427608
END_OBJECT = IMAGE
  OBJECT
                                                                                   = IMAGE
  END OBJECT
 END
```

7.1.1.3.2 PDS4 IMAGE_GRAYSCALE Label Scheme

The same data product can also be described in PDS4 by use of the IMAGE_GRAYSCALE class:

```
<?xml version="1.0" encoding="UTF-8"?>
<Product_Image_Grayscale xmlns:ns1="http://pds.nasa.gov/schema/pds4/dt"
xmlns="http://pds.nasa.gov/schema/pds4/common"
```

```
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pds.nasa.gov/schema/pds4/common
file:/D:/IMG grayscale/Product Image Grayscale 2009-06-09p.xsd">
   <Identification Area>
       <puid>
          URN:NASA:PDS:MPFL-M-IMP-2-EDR-V1.0:PDS4 IMG IMAGE GRAYSCALE ID:V1.0
       </puid>
       <Identification_Area_data_set_id>
          MPFL-M-IMP-2-EDR-V1.0
       </Identification Area data set id>
       cproduct id>IMP EDR-1246943630-REGULAR-0074051101</product id>
       <version id>1.0</version id>
       <title>MARS PATHFINDER LANDER Experiment</title>
       <creation time>1998-07-14T00:36:08.000</creation_time>
       <logical identifier>
          URN:NASA:PDS:MPFL-M-IMP-2-EDR-V1.0:PDS4 IMG IMAGE GRAYSCALE ID
       </logical identifier>
   </Identification Area>
   <Cross Reference Area>
       <instrument host puid>URN:NASA:PDS:MPFL-V1.0</instrument host puid>
       <instrument_puid>URN:NASA:PDS:IMP-V1.0</instrument_puid>
       <mission puid>URN:NASA:PDS:MARS PATHFINDER-V1.0</mission puid>
       <node puid>URN:NASA:PDS:IMAGING-V1.0</node puid>
       <target puid>URN:NASA:PDS:MARS-V1.0</target puid>
   </Cross Reference Area>
   <Observation Area>
       <spacecraft clock start count>1246943630</spacecraft clock start count>
       <spacecraft clock stop count>n/a</spacecraft clock stop count>
       <start_time>n/a</start_time>
       <stop time>n/a</stop time>
   </Observation Area>
   <File Area>
       <File>
           <local identifier>
              URN:NASA:PDS:PDS4_MPFL_M_IMP_IMAGE_FILE_ID
           </local identifier>
           <creation time>2009-05-04</creation time>
           <checksum>123</checksum>
           <directory path name>\data\N2075WE02R.FIT</directory path name>
           <file name>N2075WE02R.FIT</file name>
           <file size>12345</file size>
           <max record bytes>512</max record bytes>
           <number_of_records>270</number_of_records>
       </File>
   </File Area>
   <Data Area Image Grayscale>
       <Any_Described_Data Object>
           <Object Statistics>
               <local identifier>
                  URN:NASA:PDS:MPFL_M_IMP_STATISTICS
               </local identifier>
               <checksum>8427608</checksum>
               <maximum>4095</maximum>
               <mean>894</mean>
               <minimum>145</minimum>
               <standard deviation>538.0290</standard deviation>
           </Object Statistics>
       </Any Described Data Object>
       <Image Grayscale>
           <local identifier>
               URN:NASA:PDS:MPFL-M-IMP IMG GRAYSCALE
           </local identifier>
           <Image Grayscale_axes_order>
```

```
FIRST INDEX FASTEST
    </Image Grayscale axes order>
    <Image Grayscale byte order>MSBF</Image Grayscale byte order>
    <Array Base file type>BINARY</Array Base file type>
    <Array Base first element>TOPLEFT</Array Base first element>
    <Array_Base_min_index>0</Array_Base_min_index>
    <Array 2D number of axes>2</Array 2D number of axes>
    <Data_Location>
        <file_local_identifier>
           PDS4 MPFL M IMP IMAGE FILE ID
        </file local identifier>
        <offset>1</offset>
    </Data Location>
    <Array_Axis>
        <axis index>0</axis index>
        <axis length>248</axis length>
        <axis name>LINE</axis name>
        <axis scale type>n/a</axis scale type>
        <Array Axis axis unit>n/a</Array Axis axis unit>
    </Array Axis>
    <Array_Axis>
        <axis_index>1</axis_index>
        <axis_length>256</axis length>
        <axis name>SAMPLE</axis name>
        <axis scale type>n/a</axis scale type>
        <Array Axis axis unit>n/a</Array Axis axis unit>
    </Array Axis>
    <Array Element>
        <element_bytes>2</element_bytes>
        <element scaling factor>n/a</element scaling factor>
        <element type>MSB UNSIGNED INTEGER/element type>
        <element unit>DATA NUMBER</element unit>
        <element value offset>n/a</element value offset>
    </Array Element>
</Image Grayscale>
<!-- IDENTIFICATION DATA ELEMENTS -->
<Property Map>
    <local identifier>
        URN:NASA:PDS:MPFL M IMP PROPMAP-1
    </local identifier>
    <comment>IDENTIFICATION DATA ELEMENTS</comment>
    <namespace_id>MPFL_M_IMP_IMAGE</namespace_id>
    <property_Map_Entry>
        <property name>PRODUCER ID</property name>
        <property value>MIPL OF JPL</property value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>PRODUCER FULL NAME</property name>
        <property_value>ALLAN J. RUNKLE</property_value>
    </Property_Map_Entry>
    <Property_Map_Entry>
        <property_name>PRODUCER_INSTITUTION NAME</property name>
        <property value>
         MULTIMISSION IMAGE PROCESSING LABORATORY, JPL
        </property_value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>PRODUCT ID</property name>
        <property value>
         IMP EDR-1246943630-REGULAR-0074051101
        </property value>
    </Property_Map_Entry>
```

```
<Property_Map_Entry>
        <property name>IMAGE ID</property name>
        <property_value>74051101</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property_name>COMMAND SEQUENCE NUMBER</property_name>
        <property value>74</property value>
    </Property_Map_Entry>
    <Property_Map_Entry>
        <property name>IMAGE OBSERVATION TYPE</property name>
        <property value>REGULAR</property value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property_name>FRAME ID</property name>
        <property_value>BOTH</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>OBSERVATION NAME</property name>
        <property value>
          FILTER 5 IN 4 TIERS FOURTH QUAD MONSTER PAN.3CMD
        </property_value>
    </Property_Map_Entry>
    <Property_Map_Entry>
        <property_name>IMAGE_TIME</property_name>
        <property value>1997-07-07T05:13:42.763Z</property value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property name>PLANET DAY NUMBER</property name>
        <property_value>3</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>MPF LOCAL TIME</property name>
        <property value>13:39:12</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property_name>EARTH_RECEIVED_START_TIME</property_name>
        <property_value>1997-07-07T23:48:33.442Z</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>EARTH RECEIVED STOP TIME</property name>
        <property_value>1997-07-07T23:48:51.766Z</property_value>
    </Property Map Entry>
</Property_Map>
<!-- DESCRIPTIVE DATA ELEMENTS -->
<Property Map>
    <local identifier>
      URN:NASA:PDS:MPFL_M_IMP_PROPMAP-2
    </local identifier>
    <comment>DESCRIPTIVE DATA ELEMENTS</comment>
    <namespace id>MPFL M IMP IMAGE</namespace id>
    <Property Map Entry>
        <property_name>EXPECTED_PACKETS</property_name>
        <property value>17</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>RECEIVED PACKETS</property name>
        <property_value>17</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>APPLICATION PACKET ID</property name>
        <property value>34</property value>
    </Property_Map_Entry>
```

```
<Property Map Entry>
    <property name>APPLICATION PACKET NAME</property name>
    <property value>SCI IMG 3</property value>
</Property Map Entry>
<Property Map Entry>
   <property_name>EXPOSURE DURATION</property_name>
    <property_value>46.0000</property_value>
</Property_Map_Entry>
<Property_Map_Entry>
    <property name>EXPOSURE TYPE</property name>
    <property value>AUTO</property value>
</Property Map Entry>
<Property Map Entry>
   <property_name>EXPOSURE_COUNT</property_name>
    <property value>3</property value>
</Property Map Entry>
<Property Map Entry>
    <property name>AUTO EXPOSURE DATA CUT</property name>
    <property value>3000</property value>
</Property_Map_Entry>
<Property_Map_Entry>
    <property_name>AUTO_EXPOSURE_PIXEL_FRACTION</property_name>
    <property_value>1.0000</property_value>
</Property Map Entry>
<Property Map Entry>
    <property name>ERROR PIXELS</property name>
    <property value>0</property value>
</Property_Map Entry>
<Property_Map_Entry>
   <property name>FILTER NAME</property name>
   <property value>L670 R670</property value>
</Property Map Entry>
<Property Map Entry>
   <property_name>FILTER NUMBER</property name>
    <property_value>5</property_value>
</Property_Map_Entry>
<Property Map Entry>
    <property_name>INSTRUMENT_TEMPERATURE</property_name>
    <property_value>-12.2836</property_value>
    <property value>-12.0856</property value>
</Property Map Entry>
<Property Map Entry>
    <property_name>INSTRUMENT_TEMPERATURE_COUNT</property_name>
    <property value>162</property value>
   <property value>161</property value>
</Property Map Entry>
<Property Map Entry>
    <property_name>INSTRUMENT_DEPLOYMENT_STATE</property_name>
   <property_value>DEPLOYED</property_value>
</Property_Map_Entry>
<Property Map Entry>
    <property_name>DETECTOR_PIXEL HEIGHT</property name>
    <property_value>23.0000</property_value>
</Property Map Entry>
<Property Map Entry>
    <property_name>DETECTOR PIXEL WIDTH</property_name>
    <property_value>23.0000</property_value>
</Property Map Entry>
<Property Map Entry>
   <property name>SOURCE PRODUCT ID</property name>
   <property_value>SEQ S0074E IMPEK</property_value>
</Property Map Entry>
<Property Map Entry>
```

```
<property name>SOFTWARE NAME</property name>
        <property value>MPFTELEMPROC IMP</property value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>SOFTWARE VERSION ID</property name>
        <property_value>V1.24.46</property_value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property_name>PROCESSING_HISTORY_TEXT</property_name>
        <property value>
          CODMAC LEVEL 1 TO LEVEL 2 CONVERSION VIA
          JPL/MIPL MPFTELEMPROC
        </property value>
    </Property_Map_Entry>
</Property Map>
<!-- GEOMETRY and COMPRESSION DATA ELEMENTS -->
<Property Map>
    <local identifier>
      URN:NASA:PDS:MPFL M IMP PROPMAP-3
    </local identifier>
    <comment>GEOMETRY and COMPRESSION DATA ELEMENTS</comment>
    <namespace_id>MPFL_M_IMP_IMAGE</namespace_id>
    <Property Map Entry>
        <property name>INSTRUMENT AZIMUTH</property name>
        <property value>265.3520</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>AZIMUTH FOV</property name>
        <property_value>14.0032</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>AZIMUTH MOTOR CLICKS</property name>
        <property_value>551</property_value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>INSTRUMENT AZIMUTH METHOD</property name>
        <property_value>TELEMETRY</property_value>
    </Property Map Entry>
    <Property_Map Entry>
        <property_name>INSTRUMENT ELEVATION</property_name>
        <property value>-43.0955</property value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property name>ELEVATION FOV</property name>
        <property_value>13.5656</property_value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>ELEVATION MOTOR CLICKS</property name>
        <property_value>96</property_value>
    </Property_Map_Entry>
    <Property_Map_Entry>
        <property name>INSTRUMENT ELEVATION METHOD</property name>
        <property_value>TELEMETRY</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>SURFACE BASED INST AZIMUTH</property name>
        <property_value>61.6981</property_value>
    </Property Map Entry>
    <Property Map Entry>
        cproperty name>SURFACE BASED INST ELEVATION</property name>
        <property value>-45.7609</property value>
    </Property Map Entry>
```

```
<Property Map Entry>
        <property name>SURFACE BASED INST METHOD</property name>
        <property_value>L FRAME-QUATERNION</property_value>
    </Property Map Entry>
    <Property_Map Entry>
        <property_name>POSITIVE ELEVATION DIRECTION</property_name>
        <property value>UP</property value>
    </Property_Map_Entry>
    <Property_Map_Entry>
        <property name>SOLAR AZIMUTH</property name>
        <property value>262.8440</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>SOLAR ELEVATION</property name>
        <property value>65.8379</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>LANDER SURFACE QUATERNION</property name>
        <property_value>0.2102</property_value>
        <property_value>-0.0146</property_value>
        <property_value>-0.0293</property_value>
        <property_value>0.9771</property_value>
    </Property Map Entry>
</Property Map>
<!-- IMP FLIGHT SOFTWARE COMMAND DATA ELEMENTS -->
<Property Map>
    <local identifier>
        URN:NASA:PDS:MPFL M IMP PROPMAP-1
    </local identifier>
    <comment>IMP FLIGHT SOFTWARE COMMAND DATA ELEMENTS</comment>
    <namespace id>MPFL M IMP IMAGE</namespace id>
    <Property Map Entry>
        <property_name>COMMAND NAME</property name>
        <property_value>IMP_IMAGE_AZ_EL</property_value>
    </Property_Map_Entry>
    <Property_Map_Entry>
        <property_name>COMMAND_DESC</property_name>
        <property value>This is the image taken by the IMP
                         Using absolute azimuth and elevation as
                         the coordinate system</property value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>TLM CMD DISCREPANCY FLAG</property name>
        <property value>FALSE</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property_name>DOWNLOAD TYPE</property name>
        <property_value>IM</property_value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property_name>DARK_CURRENT DOWNLOAD FLAG</property name>
        <property_value>NULL</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>DARK CURRENT CORRECTION FLAG</property name>
        <property_value>FALSE</property_value>
    </Property Map Entry>
    <Property Map Entry>
        cproperty name>FLAT FIELD CORRECTION FLAG</property name>
        <property_value>FALSE</property_value>
    </Property Map Entry>
    <Property Map Entry>
```

```
<property name>BAD PIXEL REPLACEMENT FLAG</property name>
        <property value>TRUE</property value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>SHUTTER EFFECT CORRECTION FLAG</property name>
        <property_value>FALSE</property_value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property_name>SQRT_COMPRESSION FLAG</property name>
        <property value>FALSE</property value>
    </Property Map Entry>
</Property Map>
<!-- COMPRESSION DATA ELEMENTS -->
<Property Map>
    <local identifier>
      URN:NASA:PDS:MPFL M IMP PROPMAP-1
    </local identifier>
    <comment>COMPRESSION DATA ELEMENTS</comment>
    <namespace id>MPFL M IMP IMAGE</namespace id>
    <Property_Map_Entry>
        <property_name>INST_CMPRS_BLK_SIZE</property_name>
        <property_value>8</property_value>
        <property_value>8</property_value>
    </Property Map Entry>
    <Property_Map_Entry>
        <property name>INST CMPRS BLOCKS</property name>
        <property value>992</property value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property name>INST CMPRS MODE</property name>
        <property value>8</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>INST CMPRS PARAM</property name>
        <property_value>250</property_value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property name>INST CMPRS QUALITY</property name>
        <property value>250</property value>
    </Property_Map Entry>
    <Property Map Entry>
        <property_name>INST_CMPRS_QUANTZ_TBL_ID</property_name>
        <property value>INTERNAL 0</property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>INST CMPRS QUANTZ TYPE</property name>
        <property_value>TABULAR</property_value>
    </Property_Map_Entry>
    <Property Map Entry>
        <property_name>INST_CMPRS_SYNC_BLKS</property_name>
        <property_value>1024</property_value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>INST CMPRS NAME</property name>
        <property value>JPEG DISCRETE COSINE TRANSFORM (DCT);
                        ARITHMETIC/RATIO/LCT
        </property value>
    </Property Map Entry>
    <Property Map Entry>
        <property name>INST CMPRS RATE</property name>
        <property value>2.0187</property value>
    </Property_Map_Entry>
```

```
<Property Map Entry>
                <property name>INST CMPRS RATIO</property name>
                <property value>5.9446</property value>
            </Property_Map_Entry>
            <Property Map Entry>
                <property_name>PIXEL AVERAGING HEIGHT</property name>
                <property value>1</property value>
            </Property_Map_Entry>
            <Property_Map_Entry>
                <property name>PIXEL AVERAGING WIDTH</property name>
                <property value>1</property value>
            </Property Map Entry>
            <Property Map Entry>
                <property_name>RICE_START_OPTION</property_name>
                <property value> -1</property value>
            </Property Map Entry>
            <Property Map Entry>
                <property name>RICE OPTION VALUE</property name>
                <property value>-1</property value>
            </Property_Map_Entry>
            <Property_Map_Entry>
                <property_name>SQRT_MINIMUM_PIXEL</property_name>
                <property_value>0</property_value>
            </Property Map Entry>
            <Property Map Entry>
                <property_name>SQRT MAXIMUM PIXEL</property name>
                <property_value>0</property_value>
            </Property Map Entry>
        </Property_Map>
    </Data Area Image Grayscale>
</Product Image Grayscale>
```

7.1.1.4 PDS4 IMAGE_GRAYSCALE and PDS3 IMAGE Parallellisms

This section provides a high level discussion of the parallelisms between the PDS3 IMAGE Data Object Description (DoD) and the PDS4 IMAGE_GRAYSCALE class.

The PDS3 IMAGE (DoD) by definition was very flexible in that the DoD could define both simple Images and very complex types of Images depending on the representation of the data product byte stream. An example of a simple image is where the data product byte stream is represented as a 2-dimensional, single-banded, non-interleaved, no prefix or suffix byte construct. A more complex example of an image is where the data product byte stream is represented by any of the following:

- a. Line or Sample interleaved data
- b. Row prefix and/or suffix bytes
- c. Multi-banded data
- d. Line and Sample display counter direction

The PDS4 IMAGE_GRAYSCALE class has been specifically designed to be more restrictive in the permissible representations of the data object byte stream.

And as such, these restrictions ensure a more rigorous set of archival quality image constructs. The PDS4 IMAGE_GRAYSCALE class supports the following variations:

- 1. Axis order the default, FAST2SLOW, indicates that each axis on the left varies faster than the axis to the right (i.e., the leftmost axis varies the fastest; with the axis to the most right varying the slowest).
- 2. Byte order the default, MSBF, indicates that the bytes are represented as most-significant-byte-first.
- 3. First element the default, TOPLEFT, indicates that the first element of the byte stream is the top leftmost element.
- 4. Minimum index the default, 0, indicates that the bytes are numbered sequentially starting from 0.

TBD

7.2 Table_Base – Heterogeneous Repeating Record of Scalars

7.2.1 TABLE_CHARACTER

This section describes the TABLE_CHARACTER extension of the PDS4 Table_Base (i.e., Heterogeneous repeating record of Scalars) class where a contiguous stream of ASCII characters, assembled as fixed-width fields, maps the "items" contained in a TABLE_CHARACTER file.

This section identifies a mapping of the PDS3 TABLE object to the PDS4 TABLE_CHARACTER file construct and demonstrates how the byte stream (e.g., sequence of bits) can be described by both a PDS3 label and a PDS4 label.

7.2.1.1 TABLE_BASE Class Description and Schema

Figure 7.2-1 depicts a representation of the PDS4 TABLE_BASE class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.

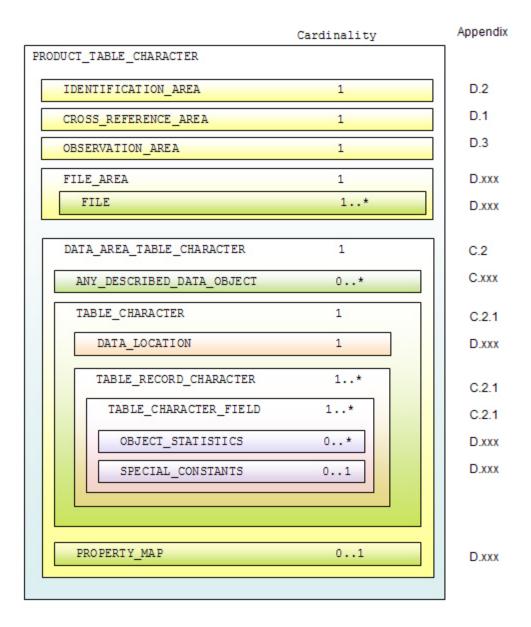


Figure 7.2.1-1. Diagram of the TABLE_CHARACTER Schema

From Figure 7.2.1-1, the overall structure of the TABLE_CHARACTER data product description can be easily discerned and understood. A detailed set of diagrams of the composite classes that comprise the TABLE_CHARACTER data product description can be found in Appendix C and Appendix D.

7.2.1.2 TABLE_CHARACTER Data Product Byte Stream

Figure 7.2.1-2 depicts a representation a TABLE_CHARACTER byte-stream. The first two rows of the diagram are for the purposes of illustrating the byte positions relative to the TABLE fields and would not normally be contained in a data product file. The remaining twenty+ rows illustrate a typical TABLE_CHARACTER data product where the fields are fixed-width ASCII across the rows in the file.

With respect to the data product:

- 1. There are 3727 rows of data (of which 3700+ rows have been omitted from the diagram for ease of reading)
- 2. There are 10 fields in each row / record in this example file.
- 3. Each field is fixed-width across all rows in this example file.
- 4. Each field is comprised of ASCII characters.
- 5. There are 88 bytes in each row / record in this example file.

88 Bytes				Record
Row 1	<cr></cr>	<lf></lf>		1
Row 2	<cr></cr>	<lf></lf>		2
	<cr></cr>	<lf></lf>		
Row 3727	<cr></cr>	<lf></lf>		3727

1	2	3	4 5	i (5 7	8		
12345678901234	567890123456	789012345678	901234567890	1234567890	01234567890	123456789012	3456 7	8
91,0.088, 91.	06951,5.156,0	0.42,0.42656	,125.547152,	4.7691,1	15300.0,"SS	091A990R6M1.	IMG" <cr><</cr>	LF>
91,0.088, 91.	06951,5.156,0	0.42,0.42656	,125.547152,	4.7691,1	15300.0,"SS	091A990R6M1.	IMG" <cr><</cr>	LF>
91,0.088, 91.	07029,5.155,0	0.42,0.42652	,125.550546,	4.7692,1	15300.0,"SS	091A990R6M1.	IMG" <cr><</cr>	LF>
91,0.089, 91.	07105,5.155,0	0.42,0.42657	,125.550344,	4.7692,1	15300.0,"SS	091A990R6M1.	IMG" <cr><</cr>	LF>
91,0.377, 91.	35854,2.225,0	0.72,0.56432	,147.854445,	19.1305,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.377, 91.	35919,2.010,0	0.64,0.51506	,197.022189,	18.7507,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.378, 91.	35978,1.928,0	0.70,0.52962	,199.881316,	21.4121,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.379, 91.	36042,1.366,1	1.71,0.71758	,185.232248,	180.0000,	4314.6,"SS	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.379, 91.	36104,1.494,1	1.47,0.69841	,179.932613,	81.2461,	4314.6,"SS	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.380, 91.	36165,1.908,0	0.83,0.58457	,171.164927,	25.8445,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.380, 91.	36229,1.677,1	1.13,0.65682	,169.245035,	42.4206,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.381, 91.	36289,1.720,0	0.87,0.57686	,237.047264,	30.6785,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.382, 91.	36415,2.645,0	0.49,0.40090	,323.650451,	10.7665,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.383, 91.	36477,4.752,0	0.40,0.39856	, 10.696469,	4.8413,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.384, 91.	36543,4.521,0	0.40,0.39494	,358.661558,	5.1823,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.384, 91.	36604,3.427,0	0.39,0.38187	, 13.809568,	6.6027,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.385, 91.	36663,3.239,0	0.39,0.37979	, 4.907225,	7.0238,	4314.6,"SS	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.385, 91.	36729,2.826,0	0.42,0.39259	,317.423490,	8.7466,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.386, 91.	36792,2.840,0	0.42,0.39058	,321.608207,	8.6859,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.387, 91.	36851,3.124,0	0.39,0.37922	,339.039685,	7.3389,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
91,0.387, 91.	36917,3.317,0	0.39,0.37703	,352.720837,	6.7690,	4314.6,"55	091AA00R6M1.	IMG" <cr><</cr>	LF>
<pre><omitted 370<="" pre=""></omitted></pre>	0+ lines>							
151,0.229,151.	20464,2.980,0	0.43,0.40324	,293.965171,	8.3952,	7140.0,"SS	1520900R6M1.	IMG" <cr><</cr>	LF>
151,0.230,151.	20527,3.072,0	0.46,0.41565	,268.822094,	8.6166,	7140.0,"SS	1520900R6M1.	IMG" <cr><</cr>	LF>

Figure 7.2.1-2. Diagram of the TABLE_CHARACTER Byte Stream

Figure 7.2.1-3 depicts the above TABLE_CHARACTER byte-stream as it would be represented as an Excel spreadsheet. This representation is helpful in understanding how the fields are represented in the data product label. Specifically that the TABLE_CHARACTER schema is compatible with most database management and spreadsheet applications. Note that the first three rows are for purposes of illustrating how the data relates to the TABLE_CHARACTER fields defined in the data product label. These first three rows would not normally be present in a data product file. The remaining twenty+ rows illustrate a typical TABLE_CHARACTER data product where the number of fields Is fixed across the rows in the file, each field has a fixed-width, each field is comprised of ASCII characters, and where each row is delimited by a row delimiter (e.g., <CR><LF>).

	Α	В	С	D	E	F	G	Н		J
1										
2	Field	Field 2	Field 3	Field 4	Field 5	Field 6	Field 7	Field 8	Field 9	Field 10
3										
4	91	0.088	91.06951	5.156	0.42	0.42656	125.5472	4.7691	15300	SS091A990R6M1.IMG
5	91	0.088	91.06951	5.156	0.42	0.42656	125.5472	4.7691	15300	SS091A990R6M1.IMG
6	91	0.088	91.07029	5.155	0.42	0.42652	125.5505	4.7692	15300	SS091A990R6M1.IMG
7	91	0.089	91.07105	5.155	0.42	0.42657	125.5503	4.7692	15300	SS091A990R6M1.IMG
8	91	0.377	91.35854	2.225	0.72	0.56432	147.8544	19.1305	4314.6	SS091AA00R6M1.IMG
9	91	0.377	91.35919	2.01	0.64	0.51506	197.0222	18.7507	4314.6	SS091AA00R6M1.IMG
10	91	0.378	91.35978	1.928	0.7	0.52962	199.8813	21.4121	4314.6	SS091AA00R6M1.IMG
11	91	0.379	91.36042	1.366	1.71	0.71758	185.2322	180	4314.6	SS091AA00R6M1.IMG
12	91	0.379	91.36104	1.494	1.47	0.69841	179.9326	81.2461	4314.6	SS091AA00R6M1.IMG
13	91	0.38	91.36165	1.908	0.83	0.58457	171.1649	25.8445	4314.6	SS091AA00R6M1.IMG
14	91	0.38	91.36229	1.677	1.13	0.65682	169.245	42.4206	4314.6	SS091AA00R6M1.IMG
15	91	0.381	91.36289	1.72	0.87	0.57686	237.0473	30.6785	4314.6	SS091AA00R6M1.IMG
16	91	0.382	91.36415	2.645	0.49	0.4009	323.6505	10.7665	4314.6	SS091AA00R6M1.IMG
17	91	0.383	91.36477	4.752	0.4	0.39856	10.69647	4.8413	4314.6	SS091AA00R6M1.IMG
18	91	0.384	91.36543	4.521	0.4	0.39494	358.6616	5.1823	4314.6	SS091AA00R6M1.IMG
19	91	0.384	91.36604	3.427	0.39	0.38187	13.80957	6.6027	4314.6	SS091AA00R6M1.IMG
20	91	0.385	91.36663	3.239	0.39	0.37979	4.907225	7.0238	4314.6	SS091AA00R6M1.IMG
21	91	0.385	91.36729	2.826	0.42	0.39259	317.4235	8.7466	4314.6	SS091AA00R6M1.IMG
22	91	0.386	91.36792	2.84	0.42	0.39058	321.6082	8.6859	4314.6	SS091AA00R6M1.IMG
23	91	0.387	91.36851	3.124	0.39	0.37922	339.0397	7.3389	4314.6	SS091AA00R6M1.IMG
24	91	0.387	91.36917	3.317	0.39	0.37703	352.7208	6.769	4314.6	SS091AA00R6M1.IMG
25	<	<omitted 37<="" td=""><td>700+ lines></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></omitted>	700+ lines>							
26	151	0.229	151.2046	2.98	0.43	0.40324	293.9652	8.3952	7140	SS1520900R6M1.IMG
27	151	0.23	151.2053	3.072	0.46	0.41565	268.8221	8.6166	7140	SS1520900R6M1.IMG

Figure 7.2.1-3. Excel Spreadsheet Representation of the TABLE_CHARACTER Byte Stream

7.2.1.3 TABLE_CHARACTER Label Scheme

This section depicts how the TABLE_CHARACTER byte-scheme, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 TABLE_CHARACTER class is the successor to the PDS3 TABLE object.

The files that describe both the PDS3 and the PDS4 data products described within this section can be found at:

- PDS3 ODL Label: http://tbd
- PDS3 data product: <u>http://tbd</u>
- PDS4 XML Label: : <u>http://tbd</u>
- PDS4 XML Label template: : <u>http://tbd</u>
- PDS4 Generic Schema: : <u>http://tbd</u>
- PDS4 Specific Product Schema: : <u>http://tbd</u>
- PDS4 Specific "other" Schema(s): : <u>http://tbd</u>

7.2.1.3.1 PDS3 TABLE_CHARACTER Label Scheme

The data product depicted in Figure 7.2.1-2 could be described in PDS3 by use of the TABLE and COLUMN objects:

PDS_VERSION_ID	=	PDS3
RECORD TYPE	=	FIXED LENGTH
RECORD BYTES		88 -
FILE RECORDS	=	3727
^TABLE	=	"CHAR_TABLE_COLLAPSED.TAB"
DATA_SET_ID	=	"PHX-M-TT-5-WIND-VEL-DIR-V1.0"
MISSION_NAME		"PHOENIX"
		"PHOENIX"
		"TELLTALE"
—		"TELLTALE_91_151"
TARGET_NAME		"MARS"
SPACECRAFT_CLOCK_START_COUNT		
SPACECRAFT_CLOCK_STOP_COUNT		"909588864.598"
START_TIME		2008-08-26T20:36:36.856
STOP_TIME		2008-10-27T15:32:50.952 2009-04-15
PRODUCT_CREATION_TIME	_	2009-04-15
OBJECT	=	TABLE
INTERCHANGE_FORMAT	=	ASCII
ROW_BYTES	=	88
ROWS	=	3727
COLUMNS	=	10
OBJECT	=	COLUMN
NAME	=	"SOL"

DATA_TYPE START_BYTE BYTES FORMAT OBJECT END OBJECT OBJECT END OBJECT BJECT = COLUMN NAME = "DIR" DATA_TYPE = ASCII_REAL START_BYTE = 40 BYTES OBJECT BYTES

= ASCII_INTEGER = 1 = 3 = "I3" UNIT = "N/A" DESCRIPTION = "PHOENIX Sol number" END_OBJECT = COLUMN OBJECT = COLUMN NAME = "LTST" DATA_TYPE = ASCII_REAL START_BYTE = 5 BYTES = 5 FORMAT = "F5.3" UNIT = "N/A" DESCRIPTION = "Local True Solar Time" END_OBJECT = COLUMN OBJECT = COLUMN NAME = "LMST" DATA_TYPE = ASCII_REAL START_BYTE = 11 BYTES = 9 FORMAT = "F9.5" UNIT = "N/A" DESCRIPTION = "Local Mean Solar Time" END_OBJECT = COLUMN DBJECT = COLUMN NAME = "V" DATA_TYPE = ASCII_REAL START_BYTE = 21 BYTES = 5 FORMAT = "F5.3" UNIT = "METERS/SECOND" DESCRIPTION = "Wind speed in meters per second" CND_OBJECT = COLUMN DBJECT = COLUMN NAME = "DV+" DATA_TYPE = ASCII_REAL START_BYTE = 27 BYTES = 4 FORMAT = "F4.2" UNIT = "METERS/SECOND" DESCRIPTION = "Error in wind speed (positive)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = "DV-" DATA_TYPE = ASCII_REAL START_BYTE = 32 BYTES = 7 FORMAT = "F7.5" UNIT = "METERS/SECOND" DESCRIPTION = "Error in wind speed (negative)" END_OBJECT = COLUMN = 10

```
FORMAT
                            = "F10.6"
                            = "DEGREES"
    UNTT
   DESCRIPTION
                             = "Wind direction in degrees given in
                                meteorological convention (0 = from N,
                                90 = \text{from E}, 180 = \text{from S}, 270 = \text{from}
                                W)"
 END OBJECT
                             = COLUMN
 OBJECT
                             = COLUMN
                             = "DDIR"
   NAME
                            = ASCII_REAL
   DATA TYPE
                           = 51
   START_BYTE
   BYTES
                             = 8
                            = "F8.4"
   FORMAT
                             = "DEGREES"
   UNIT
   DESCRIPTION
                            = "Error in direction (given in degrees).
                               If dv+ is larger than v, then this is
                                set to 180"
 END OBJECT
                            = COLUMN
 OBJECT
                             = COLUMN
                             = "EXPOSURE TIME"
   NAME
   DATA_TYPE = ASC
START_BYTE = 60
BYTES
                             = ASCII REAL
   BYTES
                             = 7
                      - ',
= "F7.1"
= "MILLISECONDS"
= "Exposure time by SSI in milliseconds"
   FORMAT
   UNIT
   UNIT
DESCRIPTION
 END OBJECT
                            = COLUMN
                           = COLUMN
 OBJECT
   NAME
                            = "FILE NAME"
                          = CHARACTER
= 69
   DATA_TYPE
START_BYTE
   BYTES
                             = 17
   FORMAT
                             = "A17"
   UNIT = "N/A"
DESCRIPTION = "Image filename used for the analysis"
ND OBJECT - COLUMN
 END OBJECT
                             = COLUMN
                            = TABLE
END OBJECT
END
```

7.2.1.3.2 PDS4 TABLE_CHARACTER Label Scheme

The same data product can also be described in PDS4 by use of the TABLE_CHARACTER and the TABLE_FIELD_CHARACTER classes.

```
<?xml version="1.0" encoding="UTF-8"?>
<Product_Table_Character xmlns="http://pds.nasa.gov/schema/pds4/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pds.nasa.gov/schema/pds4/common
file:/D:/WINWORD/OnlineSystemDevelopment/PDS4_DataModel/DDWG_product_examples_2
0100201/MGS-M-RSS-5-TPS-V1.0/Product_Table_Character_2009-06-09p.xsd">
<Identification="http://pds.nasa.gov/schema/pds4/common
file:/D:/WINWORD/OnlineSystemDevelopment/PDS4_DataModel/DDWG_product_examples_2
0100201/MGS-M-RSS-5-TPS-V1.0/Product_Table_Character_2009-06-09p.xsd">
<Identification_Area>
<puid>
<puid</puid>
<puid>
<puid>
<puid</puid>
<puid>
<puid>
<puid</puid>
<puid>
<puid</puid>
<puid>
<puid>
<puid>
<puid>
<puid</puid>
<puid</puid>
<puid>
<puid</puid>
<puid>
<puid</puid>
<puid>
<puid</puid>
<puid>
<puid>
<puid</puid>
<puid</puid</puid>
<puid</puid>
<puid</puid</puid</puid>
<puid</puid>
<puid</puid>
<puid<
```

```
</Identification Area data set id>
    oduct id>TELLTALE 91 151/product id>
    <version id>1.0</version id>
    <title>PHOENIX Mars Wind Experiment</title>
    <creation time>2009-01-01T23:34:30</creation time>
    <logical identifier>
       URN:NASA:PDS:PHX-M-TT-5-WIND-VEL-DIR:PDS4 ATM PRODUCT TABLE CHAR ID
    </logical_identifier>
</Identification Area>
<Cross Reference Area>
    <instrument host puid>URN:NASA:PDS:PHX-V1.0</instrument host puid>
    <instrument puid>URN:NASA:PDS:TT-V1.0</instrument puid>
    <mission puid>URN:NASA:PDS:PHOENIX-V1.0</mission puid>
    <node puid>URN:NASA:PDS:ATMOS-V1.0</node puid>
    <target puid>URN:NASA:PDS:MARS-V1.0</target puid>
</Cross Reference Area>
<Observation Area>
    <spacecraft clock start count>
        904250279.448
    </spacecraft clock start count>
    <spacecraft_clock_stop_count>
        909588864.598
    </spacecraft_clock_stop_count>
    <start time>2008-08-26T20:36:36.856</start time>
    <stop time>2008-10-27T15:32:50.952</stop time>
</Observation Area>
<File Area>
    <File>
        <local identifier>
           URN:NASA:PDS:PDS4 PHX M TT TABLE FILE ID
        </local identifier>
        <comment>
          this file identifies the character table product bits
        </comment>
        <creation time>1998-10-15</creation time>
        <checksum>123</checksum>
        <directory path name>
           \data\MGS-M-RSS-5-TPS-V1.0\SimpleTableCharacter 20100201.tab
        </directory path name>
        <file name>SimpleTableCharacter 20100201.tab</file name>
        <file size>111</file size>
        <max record bytes>3727</max record bytes>
        <number of records>77</number_of_records>
    </File>
</File Area>
<Data Area Table Character>
    <Table Character>
        <local identifier>
            URN:NASA:PDS:PHX M TT TABLE
        </local identifier>
        <Table_Base_Character_file_type>
            CHARACTER
        </Table Base Character file type>
        <number of fields>10</number of fields>
        <number of records>3727</number of records>
        <record bytes>88</record bytes>
        <Data Location>
            <file local identifier>
               URN:NASA:PDS:PDS4 PHX M TT TABLE FILE ID
            </file local identifier>
            <offset>1</offset>
        </Data Location>
        <Table Record Character>
```

```
<Table Character Field>
  <field name>SOL</field name>
  <field number>1</field number>
  <field data type>ASCII INTEGER</field data type>
 <field location>1</field location>
 <field_length>3</field length>
 <field_format>I3</field_format>
  <field min physical>91</field min physical>
  <field max physical>151</field max physical>
  <field unit>N/A</field unit>
  <field description>PHOENIX Sol number</field description>
</Table Character Field>
<Table Character Field>
  <field name>LTST</field name>
  <field number>2</field number>
  <field data type>ASCII REAL</field data type>
  <field location>5</field location>
  <field length>5</field length>
 <field format>F5.3</field format>
 <field min physical>0.088078704</field min physical>
 <field_max_physical>0.230243056</field_max_physical>
  <field unit>N/A</field unit>
  <field description>Local True Solar Time</field description>
</Table Character Field>
<Table Character Field>
  <field_name>LMST</field_name>
  <field number>3</field number>
  <field data type>ASCII REAL</field data type>
 <field location>11</field location>
 <field length>9</field length>
 <field format>F9.5</field format>
 <field min physical>91.0695122</field min physical>
 <field max physical>151.2052778</field max physical>
 <field unit>N/A</field unit>
  <field description>Local Mean Solar Time</field description>
</Table_Character_Field>
<Table_Character_Field>
  <field name>V</field name>
  <field number>4</field number>
  <field data type>ASCII REAL</field data type>
  <field location>21</field location>
  <field_length>5</field_length>
 <field format>F5.3</field format>
 <field min physical>3.072451472</field min physical>
  <field max physical>5.15605715</field max physical>
  <field unit>METERS/SECOND</field unit>
  <field description>Wind speed in meters per second
  </field description>
</Table Character Field>
<Table Character Field>
  <field name>DV+</field name>
  <field number>5</field number>
  <field_data_type>ASCII_REAL</field_data_type>
  <field location>27</field location>
  <field length>4</field length>
 <field format>F4.2</field format>
 <field min physical>0.428682136</field min physical>
 <field max physical>0.46032408</field max physical>
 <field unit>METERS/SECOND</field unit>
 <field description>Error in wind speed (positive)
  </field description>
</Table Character Field>
<Table Character Field>
```

```
<field name>DV-</field name>
  <field number>6</field number>
  <field data type>ASCII REAL</field data type>
  <field location>32</field location>
  <field length>7</field length>
  <field_format>F7.5</field_format>
  <field min physical>0.415653998</field min physical>
  <field max physical>0.42656498</field max physical>
  <field_unit>METERS/SECOND</field unit>
  <field description>Error in wind speed (negative)
  </field description>
</Table Character Field>
<Table Character Field>
  <field name>DIR</field name>
  <field number>7</field number>
  <field data type>ASCII REAL</field data type>
  <field location>40</field location>
  <field length>10</field length>
  <field format>F10.6</field format>
  <field min physical>125.5471521</field min physical>
  <field_max_physical>268.8220941</field_max_physical>
  <field unit>DEGREES</field unit>
  <field description>Wind direction in degrees given in
                      meteorological convention (0 = \text{from N})
                      90 = \text{from E}, 180 = \text{from S}, 270 = \text{from W}
  </field description>
</Table Character Field>
<Table Character Field>
  <field name>DDIR</field name>
  <field number>8</field number>
  <field data type>ASCII REAL</field data type>
  <field location>51</field location>
  <field length>8</field length>
  <field format>F8.4</field format>
  <field min physical>4.769160219</field min physical>
  <field_max_physical>8.616672754</field_max_physical>
  <field_unit>DEGREES</field unit>
  <field description>Error in direction (given in degrees).
                      If dv+ is larger than v, then this is
                      set to 180</field description>
</Table Character Field>
<Table Character Field>
  <field name>EXPOSURE TIME</field name>
  <field number>9</field number>
  <field_data_type>ASCII_REAL</field data type>
  <field location>60</field location>
  <field length>7</field length>
  <field format>F7.1</field format>
  <field min physical>7140</field min physical>
  <field max physical>15300</field max physical>
  <field unit>MILLISECONDS</field unit>
  <field description>Exposure time by SSI in
                       milliseconds</field description>
</Table Character Field>
<Table Character Field>
  <field name>FILE NAME</field name>
  <field number>10</field number>
  <field data type>CHARACTER</field data type>
  <field location>69</field location>
  <field length>17</field length>
  <field format>A17</field format>
  <field unit>N/A</field unit>
  <field description>Image filename used
```

```
for the analysis</field_description>
</Table_Character_Field>
</Table_Record_Character>
</Table_Character>
</Data_Area_Table_Character>
</Product_Table_Character>
```

7.2.1.4 PDS4 TABLE_CHARACTER and PDS3 TABLE Parallelisms

This section provides a high level discussion of the parallelisms between the PDS3 TABLE Data Object Description (DoD) and the PDS4 TABLE_CHARACTER class.

The PDS3 TABLE (DoD) by definition was very flexible in that the DoD could define both simple Tables and very complex types of Tables depending on the representation of the data product byte stream. An example of a simple table is where the data product byte stream is represented as a 2-dimensional construct where neither dimension has either prefix or suffix bytes. A more complex example of a table is where the data product byte stream product byte stream is represented by any of the following:

- a. Row prefix and/or suffix bytes
- b. The data is represented as row major storage
- c. The data does not contain any contiguous unused or spare bytes

The PDS4 TABLE_CHARACTER class has been specifically designed to be more restrictive in the permissible representations of the data object byte stream. And as such, these restrictions ensure a more rigorous set of archival quality table constructs

APPENDIX A ACRONYMS

The following acronyms are pertain to this document:

ADM API COTS EN ESDIS FTP IEEE IPDA IT JPL NASA NSSDC PDS RM-ODP RSS SDSC SOA TB TOGAF	Architecture Development Method Application Programming Interface Commercial Off-The-Shelf Engineering Node (PDS) Earth Science Data and Information System File Transfer Protocol Institute of Electrical and Electronics Engineers International Planetary Data Alliance Information Technology Jet Propulsion Laboratory National Aeronautics and Space Administration National Space Science Data Center Planetary Data System Reference Model of Open Distributed Processing Really Simple Syndication San Diego Supercomputing Center Service-Oriented Architecture Terabyte The Open Group Architecture Framework
XML	eXtensible Markup Language

APPENDIX B DEFINITION OF TERMS

The following are definitions of essential terms used throughout this document:

Association:

An "association" is a type of defined relationship between classes.

Attribute:

An "attribute" is a property or characteristic that allows both identification and distinction.

Cardinality:

"Cardinality" is the number of values allowed to an attribute or association in a single class. Cardinality in general is stated as a range with a minimum and maximum. For example, an attribute that may be multi-valued will have a cardinality of "1..*". A cardinality where the minimum and maximum are the same is often shown as the single value. For example, an attribute required to have exactly one value will have a cardinality of "1". When a value is required the minimum cardinality is at least 1. At least one value is always required in PDS4.

Class:

A "class" is the set of attributes which identifies a family. A class is generic -- a template from which individual members of each family may be constructed.

Class Hierarchy:

A "class hierarchy" is a classification of object types, denoting objects as the instantiations of classes.

Data Elements:

A "data element" is a discrete unit of data or metadata. It is an elementary piece of information in a data dictionary.

Entity:

An "entity" is something that has a distinct, separate existence.

Metadata:

Metadata is data about data.

Model:

A "model" is a representation or description designed to show an entity and its composition.

Object:

An "object" is a specific instance of a class.

PDS4 Data Providers Handbook

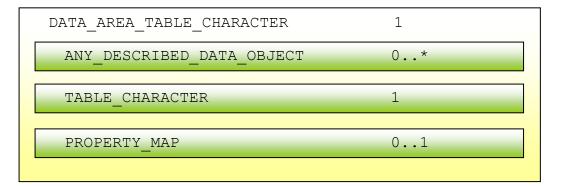
APPENDIX C DIGITAL OBJECT DESCRIPTIONS

This section provides a detailed diagrams of the Classes that collectively comprise the Digital Object Descriptions that are referenced within this document:

- (1) IMAGE_GRAYSCALE_SET
- (2) TABLE_CHARACTER_SET
- (3) TABLE_BINARY_SET
- (4) SOFTWARE SET
- (5) DOCUMENT_SET

C.1 DATA_AREA_IMAGE_GRAYSCALE

Class Description: TBD


DATA_AREA_IMAGE_GRAYSCALE1ANY_DESCRIBED_DATA_OBJECT0..*IMAGE_GRAYSCALE1PROPERTY_MAP0..1

C.1.1 IMAGE_GRAYSCALE

IMAGE GRAYSCALE	1
LOCAL IDENTIFIER	1
COMMENT	01
IMAGE GRAYSCALE AXES ORDER	1
IMAGE GRAYSCALE BYTE ORDER	1
ARRAY BASE FILE TYPE	1
ARRAY BASE FIRST ELEMENT	ī
ARRAY BASE MIN INDEX	ī
ARRAY 2D NUMBER OF AXES	1
ARRAT_2D_ROMDER_OF_ARES	1
DATA LOCATION	1
FILE LOCAL IDENTIFIER	1
OFFSET	1
ARRAY AXIS	2
AXIS INDEX	1
AXIS LENGTH	1
AXIS NAME	1
AXIS SCALE TYPE	1
	-
AXIS_UNIT	1
ARRAY_ELEMENT	1
ELEMENT BYTES	01
ELEMENT SCALING FACTOR	01
ELEMENT TYPE	1
ELEMENTUNIT	01
ELEMENT VALUE OFFSET	01

C.2 DATA_AREA_TABLE_CHARACTER

Class Description: TBD

C.2.1 TABLE_CHARACTER

ABLE_CHARACTER LOCAL_IDENTIFIER COMMENT TABLE_BASE_CHARACTER_FILE_TYPE NAME NUMBER_OF_FIELDS NUMBER_OF_RECORDS RECORD_BYTES	1 1 01 1 01 1 1
DATA_LOCATION FILE_LOCAL_IDENTIFIER OFFSET	1 1 1
TABLE_RECORD_CHARACTER	1*
TABLE CHARACTER FIELD	1*
FIELD NAME	1
FIELD NUMBER	01
FIELD DATA TYPE	1
FIELD_LOCATION	01
FIELD_LENGTH	1
FIELD_FORMAT	01
FIELD_MIN_PHYSICAL	01
FIELD MAX PHYSICAL	01
FIELD MIN LOGICAL	01
FIELD_MAX_LOGICAL	01
FIELD_SCALING_FACTOR	01
FIELD_VALUE_OFFSET	01
FIELD_UNIT	01
FIELD_DESCRIPTION	01
OBJECT_STATISTICS	0*
SPECIAL_CONSTANTS	01

C.3 DATA_AREA_TABLE_BINARY

DATA_AREA_TABLE_BINARY	1
ANY_DESCRIBED_DATA_OBJECT	0*
TABLE_BINARY	1
PROPERTY_MAP	01

C.3.1 TABLE_BINARY

TABLE BINARY	1	
LOCAL IDENTIFIER	1	
COMMENT	01	
TABLE BASE BINARY FILE TYPE	1	
NAME	01	
NUMBER OF FIELDS	1	
NUMBER OF RECORDS		
RECORD BYTES	1	
RECORD_DITES	1	
DATA LOCATION	1	
FILE LOCAL IDENTIFIER	1	
OFFSET	1	
OFFSEI	1	
TABLE RECORD BINARY	1*	
TABLE BINARY FIELD	1*	
FIELD NAME	1	
FIELD NUMBER	01	
FIELD DATA TYPE	1	
FIELD LOCATION	01	
FIELD LENGTH	1	
FIELD FORMAT	01	
FIELD MIN PHYSICAL	01	
FIELD MAX PHYSICAL	01	
FIELD_MIN_LOGICAL	01	
FIELD_MAX_LOGICAL	01	
FIELD_SCALING_FACTOR	01	
FIELD_VALUE_OFFSET	01	
FIELD_UNIT	01	
FIELD_DESCRIPTION	01	
OBJECT_STATISTICS	0*	
SPECIAL_CONSTANTS	01	

C.4 TABLE_CHARACTER_GROUPED_SET

Class Description: TBD

C.4.1 TABLE_CHARACTER_GROUPED

C.4.2 TABLE_RECORD_CHARACTER_GROUPED

C.4.3 TABLE_CHARACTER_GROUPED_SEQUENCE

Class Description: TBD

C.5 STREAM_DELIMITED_SET

Class Description: TBD

C.5.1 STREAM_DELIMITED

C.5.2 STREAM_DELIMITED_RECORD

Class Description: TBD

C.6 SOFTWARE_FORMAT_SET

C.6.1 SOFTWARE_SET_DESC

C.7 DOCUMENT_FORMAT_SET

Class Description: TBD

C.7.1 DOCUMENT_SET_DESC

C.x HEADER_SET

Class Description: TBD

C.x.1 HEADER

APPENDIX D NON-DIGITAL OBJECT DESCRIPTIONS

This section provides a detailed diagrams of the Classes that collectively comprise the Non-Digital Object Descriptions that are referenced within this document:

- (1) DESCRIPTION_AREA
- (2) IDENTIFICATION_AREA
- (3) CROSS_REFERENCE_AREA
- (4) OBSERVATION_SECTION
- (5) SPACECRAFT_OBSERVATION_SECTION
- (6) OBJECT_STATISTICS
- (7) SPECIAL_CONSTANTS
- (8) PROPERTY_MAP
- (9) FILE_AREA
- (10) DATA_LOCATION
- D.1 DESCRIPTION_AREA

Class Description: TBD

DESCRIPTION_AREA DESCRIPTION 0..1 1

D.2 IDENTIFICATION_AREA

Class Description: TBD

IDENTIFICATION_AREA	1
PUID	1
IDENTIFICATION_AREA_DATA_SET_ID	1
PRODUCT_ID	1
VERSION ID	1
TITLE	1
ALTERNATE_TITLE	01
CREATION_TIME	1
LOGICAL IDENTIFIER	1

D.3 CROSS_REFERENCE_AREA

CROSS_REFERENCE_AREA	1*
INSTRUMENT HOST PUID	0*
INSTRUMENT PUID	0*
MISSION PUID	0*
NODE PUID	0*
RESOURCE PUID	0*
TARGET PUID	0*
LOCAL_IDENTIFIER COMMENT	1 01
REFERENCE COLLECTION ENTRY	1*
REFERENCE IDENTIFIER	0*
REFERENCE PRODUCT TYPE	0*
REFERENCE RELATION DESC	0*

D.4 OBSERVATION_AREA

Class Description: TBD

OBSERVATION_AREA	1
COMMENT	01
START_TIME	1
STOP_TIME	1

D.5 SPACECRAFT_OBSERVATION_AREA

SPACECRAFT_CIRCUMSTANCES_OF_OBSERVATION_AREA	1
COMMENT	01
SPACECRAFT CLOCK START COUNT	01
SPACECRAFT CLOCK STOP COUNT	01
START TIME	1
STOP TIME	1

٦

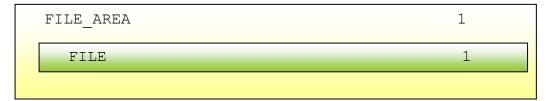
D.6 OBJECT_STATISTICS

Class Description: TBD

OBJECT STATISTICS	0*
LOCAL IDENTIFIER	1
COMMENT	01
CHECKSUM	01
MAXIMUM	01
MEAN	01
MEDIAN	01
MINIMUM	01
STANDARD_DEVIATION	01

D.7 SPECIAL_CONSTANTS

SPECIAL_CONSTANTS	01
ERROR CONSTANT	01
INVALID CONSTANT	01
MISSINGCONSTANT	01
NOT_APPLICABLE_CONSTANT	01
SATURATED_CONSTANT	01
UNKNOWN CONSTANT	01


D.8 PROPERTY_MAP

Class Description: TBD

PROPERTY_MAP	01
LOCAL_IDENTIFIER	1
COMMENT	01
NAMESPACE_ID	1
PROPERTY_MAP_ENTRY	1*
PROPERTY_NAME	1
PROPERTY_VALUE	1*

D.9 FILE_AREA

Class Description: TBD

D.10 DATA_LOCATION

DATA LOCATION	1
FILE LOCAL IDENTIFIER	1
OFFSET	1