Extended Examples for the Basis of Discussion @ the Technical Session

Data System Working Group
June, 2009

TABLE OF CONTENTS

1.0 Array_Base - Homogeneous N-Dimensional Array Of Scalars 2
1.1 IMAGE GRAYSCALE. 2
2.0 Table_Base - Heterogeneous Repeating Record of Scalars 15
2.1 TABLE_CHARACTER 15
2.2 TABLE_BINARY 27
2.3 TABLE_CHARACTER_GROUPED 39
3.0 UNENCODED STREAM BASE 69
3.1 SOFTWARE SET. 69
4.0 ENCODED STREAM BASE 76
4.1 DOCUMENT_SET 76
APPENDIX A ACRONYMS 90
APPENDIX B DEFINITION OF TERMS 91

1.0 Array_Base - Homogeneous N-Dimensional Array Of Scalars

1.1 IMAGE_GRAYSCALE

This section describes the IMAGE_GRAYSCALE extension of the PDS4 Array_Base, (i.e., Homogeneous N -dimensional array of Scalars) class where a contiguous stream of BINARY data, assembled as a two dimensional data structure, maps the "items" contained in a IMAGE_GRAYSCALE file.

This section identifies a mapping of the PDS3 IMAGE object to the PDS4 IMAGE_GRAYSCALE file construct and demonstrates how the byte stream (e.g., sequence of bits) can be described by both a PDS3 label and a PDS4 label.

1.1.1 IMAGE_GRAYSCALE Class Description and Schema

Figure 1.1-1 depicts a representation of the PDS4 IMAGE_GRAYSCALE class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.

```OBJECT = TAGGED_IMAGE_GRAYSCALE_SET OBJECT = DESCRIPTION_SECTION DESCRI PTION END_OBJECT = DESCRIPTION_SECTION OBJECT = HEADER DATA_LOCATION LOCAL_IDENTIFIER COMMENT BYTES DESCRIPTION EXTERNAL_STANDARD FILE_TYPE NAME END_OBJECT = HEADER```	Req/Opt   Optional   Required   Optional   Required   Required   Optional   Required   Optional   Required   Required   Optional	Cardinality   1   1      1
OBJECT = IMAGE_GRAYSCALE DATA_LOCATION LOCAL_IDENTIFIER COMMENT AXES_ORDER BYTE_ORDER FIRST_ELEMENT FILE_TYPE MIN_INDEX NUMBER_OF_AXES ELEMENT_BYTES ELEMENT_OFFSET ELEMENT_SCALING_FACTOR ELEMENI_TYPE ELEMENT_UNIT AXIS_NAME AXIS_LENGTH AXIS_SCALE_TYPE AXIS_UNIT END_OBJECT = IMAGE_GRAYSCALE	Required   Required   Required   Optional   Required   Required   Optional   Required   Optional   Required   Optional	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OBJECT = OBJECT_STATISTICS
OBJECT = OBJECT_STATISTICS
LOCAL_IDENTIFIER
LOCAL_IDENTIFIER
AVERAGE
AVERAGE
CHECKSUM
CHECKSUM
MAX IMTJM
MAX IMTJM
MIN IMOM
MIN IMOM
STANDARD_DEVIATION
STANDARD_DEVIATION
END_OBJECT = OBJECT_STATISTICS
END_OBJECT = OBJECT_STATISTICS
Required 1
Required 1
Required 1
Required 1
Required 1
Required 1
Optional 1
OBJECT = SPECIAL_CONSTANTS
Optional 1
ERROR_CONSTANT
Required
INVAL İD_CONSTANT
Required
MISSING_CONSTANT
Required $\quad 1$
NOI_APPLICABLE_CONSTANT
Required
SATURATED CONSTANT
UNKNNOWN_CONSTANT
Required 1
Required 1
END_OBJECT = SPECIAL_CONSTANTS
Optional 1
OBJECT $=$ PROPERTY_MAP
LOCAL_IDENTIFIER
Required
COMMENT
Optional
PROPERTY_MAP_ENTRY
$\begin{array}{ll}\text { Optional } & 1 \\ \text { Required } & 1\end{array}$
END_OBJECT $=$ PROPERTY_MAP
END_OBJECT $=$ TAGGED_IMAGE_GRAYSCALE_SET

Figure 1.1-1. Diagram of the IMAGE_GRAYSCALE Schema
From Figure 1.1-1, the overall structure of the IMAGE_GRAYSCALE data object description can be easily discerned and understood.

1. The parent class, the TAGGED_IMAGE_GRAYSCALE_SET class, is comprised of six sub-classes:

- DESCRIPTION_SECTION class
- HEADER class
- IMAGE_GRAYSCALE class
- PROPERTY_MAP class

2. The DESRIPTION_SECTION class may optionally exist once and only once within the context of the the TAGGED_IMAGE_GRAYSCALE_SET class.
3. The DESCRIPTION_SECTION class consists of a single two required nonrepeating data element.
4. The HEADER class may optionally exist once and only once within the context of the the TAGGED_IMAGE_GRAYSCALE_SET class.
5. The HEADER class consists of five required non-repeating data elements, and three optional non-repeating data elements..
6. The IMAGE_GRAYSCALE class must exist once and only once within the context of the TAGGED_IMAGE GRAYSCALE_SET class.
7. The IMAGE_GRAYSCALE class consists of six required non-repeating data elements and twelve optional non-repeating data elements.
8. The OBJECT_STATISTICS class may exist once and only once within the context of the TAGGED_IMAGE_GRAYSCALE_SET class.
9. The OBJECT_STATISTICS class is comprised of a single required nonrepeating data element and five optional non-repeating data elements.
10. The SPECIAL_CONSTANTS class may optionally exist once and only once within the context of the the TAGGED_IMAGE_GRAYSCALE_SET class.
11. The SPECIAL_CONSTANTS class is comprised of six required non-repeating data elements.
12. The PROPERTY_MAP class may optionally exist once and only once within the context of the the TAGGED_IMAGE_GRAYSCALE_SET class.
13. The PROPERTY_MAP class consists of two required non-repeating data elements and a single optional non-repeating data element.

### 1.1.2 IMAGE_GRAYSCALE Data Product Byte Stream

Figure 1.1-2 depicts a representation an IMAGE_GRAYSCALE byte-stream. The first two rows of the diagram are for the purposes of illustrating the byte positions relative to the IMAGE fields and would not normally be contained in a data object description file. The remaining twenty+ rows illustrate a typical IMAGE_GRAYSCALE data object description, where the data object fields are homogeneous in fixed-width ASCII across the rows in the file.

With respect to the data object:

1. There are 248 rows (lines) of data (of which $240+$ rows have been omitted from the diagram for ease of reading)
2. There are 256 fields (samples) in each row / record in this example file (of which $240+$ have been omitted from the diagram for ease of reading)
3. Each element is identical in type and represented by an identical storage format across all rows in this example file.
4. Each field is comprised of BINARY data formatted as 2-byte msb unsigned integers.
5. There are 512 bytes in each row / record in this example data object file.


Figure 1.1-2. Diagram of the IMAGE_GRAYSCALE Byte Stream


Figure 1.1-3. Image as represented by IMAGE_GRAYSCALE Byte Stream

Figure 1.1-2 and Figure 1.1-3 depict the above IMAGE_GRAYSCALE bytestream as it would be represented as a 2-dimensional array. This representation
is helpful in understanding how the data object fields are represented in the data object description (e.g., PDS4 product label). Specifically that the IMAGE_GRAYSCALE is comprised of two axes each of which have specific attributes that both identify and define the structure of the data object:

AXIS_NAME	$=($ "LINE", "SAMPLE")
NUMBER_OF_AXES	$=2$
AXES_ORDER	$=$ FAST2SLOW
AXIS_LENGTH	$=(248,256)$
AXIS_SCALE_TYPE	$=(" N / A ", ~ " N / A ")$
AXIS_UNIT	$=(" N / A ", ~ " N / A ")$

Each of the two axes is further comprised of a set of homogeneous fields each identical in type, format, and structure:

```
ELEMENT_BYTES = 2
ELEMENT_OFFSET = "N/A"
ELEMENT_SCALING_FACTOR = "N/A"
ELEMENT_TYPE = MSB_UNSIGNED_INTEGER
ELEMENT_UNIT = "DATA NUMBER
```


### 1.1.3 IMAGE_GRAYSCALE Label Scheme

This section depicts how the IMAGE_GRAYSCALE byte-scheme, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 IMAGE_GRAYSCALE class is the successor to the PDS3 IMAGE object.

### 1.1.3.1 PDS3 IMAGE_GRAYSCALE Label Scheme

The data product depicted in Figure 1.1-2 could be described in PDS3 by use of the IMAGE object:

```
PDS_VERSION_ID = PDS3
/* FILE CHARACTERISTICS */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 512
FILE_RECORDS = 270
/* POINTERS TO DATA OBJECTS */
^IMAGE = "I943630R.RAW"
/* IDENTIFICATION DATA ELEMENTS */
```

```
DATA_SET_ID
DATA_SET_NAME
PRODUCER_ID
PRODUCER_FULL_NAME
PRODUCER_INSTITUTION_NAME
PRODUCT_ID
IMAGE_ID
COMMAND_SEQUENCE_NUMBER
IMAGE_OBSERVATION_TYPE
FRAME_ID
MISSION_NAME
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
INSTRUMENT_ID
TARGET_NAME
OBSERVATION_NAME
IMAGE_TIME
PLANET_DAY_NUMBER
MPF_LOCAL_TIME = 13:39:12
SPACECRAFT_CLOCK_START_COUNT
EARTH_RECEIVED_START_TIME
EARTH_RECEIVED_STOP_TIME
PRODUCT_CREATION_TIME
/* DESCRIPTIVE DATA ELEMENTS */
EXPECTED_PACKETS = 17
RECEIVED_PACKETS = 17
APPLICATION_PACKET_ID = 34
APPLICATION_PACKET_NAME
EXPOSURE_DURATION
EXPOSURE_TYPE
EXPOSURE_COUNT
AUTO_EXPOSURE_DATA_CUT
AUTO_EXPOSURE_PIXEL_FRACTION = 1.0000
ERROR_PIXELS
FILTER_NAME
FILTER_NUMBER
INSTRUMENT_TEMPERATURE
INSTRUMENT_TEMPERATURE_COUNT
INSTRUMENT_TEMPERATURE_COUNT
DETECTOR_PIXEL_HEIGHT
DETECTOR_PIXEL_WIDTH
SOURCE_PRODUCT_ID
SOFTWARE_NAME
SOFTWARE_VERSION_ID
PROCESSING_HISTORY_TEXT
/* GEOMETRY DATA ELEMENTS */
INSTRUMENT_AZIMUTH
INSTRUMENT_AZIMUTH
AZIMUTH_MOTOR_CLICKS
INSTRUMENT_AZIMUTH_METHOD
INSTRUMENT_ELEVATION
ELEVATION_FOV
ELEVATION_MOTOR_CLICKS
INSTRUMENT_ELEVATION_METHOD
SURFACE_BASED_INST_AZIMUTH
SURFACE_BASED_INST_ELEVATION
= 551
= "TELEMETRY"
= -43.0955
= 13.5656
= 96
= "TELEMETRY"
= 61.6981
= "MPFL-M-IMP-2-EDR-V1.0"
 = "MPF LANDER MARS IMAGER FOR MARS
 PATHFINDER 2 EDR V1.0"
= "MIPL OF JPL"
= "ALLAN J. RUNKLE"
= "MULTIMISSION IMAGE PROCESSING
 LABORATORY, JET PROPULSION LAB"
= "IMP_EDR-1246943630-REGULAR-0074051101"
= 74051101
= 74
= REGULAR
= BOTH
= "MARS PATHFINDER"
= "MARS PATHFINDER LANDER"
= "IMAGER FOR MARS PATHFINDER"
= "IMP"
= "MARS"
= "FILTER_5_IN_4_TIERS_FOURTH_Q_PAN.3CMD"
= 1997-07-07T05:13:42.763Z
= 3
MPF_LOCAL_TIME = 13:39:12
= 1246943630
= 1997-07-07T23:48:33.442Z
= 1997-07-07T23:48:51.766Z
= 1998-07-14T00:36:08.000Z
= 34
= "SCI_IMG_3"
= 46.0000
= AUTO
= 3
= 3000
= 1.0000
= 0
= "L670_R670"
= 5
= (-12.2836, -12.0856)
= (162, 161)
= "DEP,161)
= "DEPLOYED"
= 23.0000
= 23.0000
= "SEQ_S0074E_IMPEK"
= "MPFTELEMPROC_IMP"
= "V1.24.46"
= "CODMAC LEVEL 1 TO LEVEL 2 CONVERSION
 VIA JPL/MIPL MPFTELEMPROC"
= 14.0032
= -45.7609
```

```
SURFACE_BASED_INST_METHOD = "L_FRAME-QUATERNION"
POSITIVE_ELEVATION_DIRECTION = UP
SOLAR_AZIMUTH = 262.8440
SOLAR_ELEVATION = 65.8379
LANDER_SURFACE_QUATERNION = (0.2102, -0.0146, -0.0293, 0.9771)
/* IMP FLIGHT SOFTWARE COMMAND DATA ELEMENTS */
COMMAND_NAME = "IMP_IMAGE_AZ_EL"
COMMAND_DESC = "This is the image taken by the IMP
 Using absolute azimuth & elevation as
 the coordinate system"
TLM_CMD_DISCREPANCY_FLAG = FALSE
DOWNLOAD_TYPE
DARK_CURRENT_DOWNLOAD_FLAG = "NULL"
DARK_CURRENT_CORRECTION_FLAG = FALSE
FLAT_FIELD_CORRECTION_FLAG = FALSE
BAD_PIXEL_REPLACEMENT_FLAG = TRUE
SHUTTER_EFFECT_CORRECTION_FLAG = FALSE
SQRT_COMPRESSION_FLAG = FALSE
/* COMPRESSION DATA ELEMENTS */
INST_CMPRS_BLK_SIZE = (8, 8)
INST_CMPRS_BLOCKS = 992
INST_CMPRS_MODE = 8
INST_CMPRS_PARAM = 250
INST_CMPRS_QUALITY = 250
INST_CMPRS_QUANTZ_TBL_ID = "INTERNAL_0"
INST_CMPRS_QUANTZ_TYPE = TABULAR
INST_CMPRS_SYNC_BLKS = 1024
INST_CMPRS_NAME = "JPEG DISCRETE COSINE TRANSFORM (DCT);
 ARITHMETIC/RATIO/LCT"
INST_CMPRS_RATE = 2.0187
INST_CMPRS_RATIO = 5.9446
PIXEL_AVERAGING_HEIGHT = 1
PIXEL_AVERAGING_WIDTH = 1
RICE_START_OPTION = -1
RICE_OPTION_VALUE = -1
SQRT_MINIMUM_PIXEL = 0
SQRT_MAXIMUM_PIXEL = 0
/* IMAGE OBJECT DATA ELEMENTS */
OBJECT = IMAGE
 INTERCHANGE_FORMAT = BINARY
 LINES
= 248
 LINE_SAMPLES = 256
 BANDS = 1
 SAMPLE_TYPE = MSB_UNSIGNED_INTEGER
 SAMPLE_BITS = 16
 SAMPLE_BIT_MASK = 2#0000111111111111#
 MAXIMUM = 4095
 MEAN = 1385.3000
 MEDIAN = 894
 MINIMUM = 145
 STANDARD_DEVIATION = 538.0290
 FIRST_LINE = 3
 FIRST_LINE_SAMPLE
 CHECKSUM
= 1
= 8427608
END_OBJECT = IMAGE
END
```


### 1.1.3.2 PDS4 IMAGE_GRAYSCALE Label Scheme

The same data product can also be described in PDS4 by use of the IMAGE_GRAYSCALE class:

```
#PDS4#
/* ******* LABEL TEMPLATE - PRODUCT_IMAGE_GRAYSCALE ******* */
OBJECT = PRODUCT_IMAGE_GRAYSCALE;
 OBJECT = IDENTIFICATION_SECTION;
 DD_VERSION_ID = "DD_VERSION_ID";
 IDENTIFIER = "PDS4_IMG_IMAGE_GRAYSCALE_ID:V1.0";
 LABEL_REVISION_NOTE = "20090101:1.0 - initial version;
 20090102:1.1 - added another column";
 PDS_VERSION_ID = "PDS4.0";
 PRODUCT_CREATION_TIME = 1998-07-14T00:36:08.000;
 TITLE = "MARS PATHFINDER LANDER Experiment";
 URN = "http://URN:MPFL-M-IMP-2-EDR-V1.0:PDS4_IMG_GRAY-
SCALE_IMAGE_ODL.LBL:1.0";
 VERSION = "1.0";
 END_OBJECT = IDENTIFICATION_SECTION;
 OBJECT = DESCRIPTION_SECTION;
 DESCRIPTION = "ANNOTATION FOR THE PRODUCT GOES HERE.";
 END_OBJECT = DESCRIPTION_SECTION;
 OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
 COMMENT = "Observation Intent";
 SPACECRAFT_CLOCK_START_COUNT = "1246943630";
 SPACECRAFT_CLOCK_STOP_COUNT = "N/A";
 START_TIME = "N/A";
 STOP_TIME = "N/A";
 END_OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
 OBJECT = DATASET_SECTION;
 DATA_SET_ID = "MPFL-M-IMP-2-EDR-V1.0";
 END_OBJECT = DATASET_SECTION;
 OBJECT = MISSION_SECTION;
 MISSION_NAME = "MARS PATHFINDER";
 END_OBJECT = MISSION_SECTION;
 OBJECT = INSTRUMENT_HOST_SECTION;
 INSTRUMENT_HOST_ID = "MPFL";
 END_OBJECT = INSTRUMENT_HOST_SECTION;
 OBJECT = INSTRUMENT_SECTION;
 INSTRUMENT_ID_NEW = "IMP";
 END_OBJECT = INSTRUMENT_SECTION;
 OBJECT = NODE_SECTION;
```

```
 NODE_NAME = "IMAGING";
 END_OBJECT = NODE_SECTION;
 OBJECT = TARGET_SECTION;
 TARGET_NAME = "MARS";
 END_OBJECT = TARGET_SECTION;
 OBJECT = TAGGED_IMAGE_GRAYSCALE_SET;
 OBJECT = IMAGE_GRAYSCALE;
 DATA_LOCATION = ("MPFL_M_IMP_IMAGE_FILE",1);
 LOCAL_IDENTIFIER = "MPFL_M_IMP_IMAGE";
 AXES_ORDER = FAST2SLOW;
 BYTE_ORDER = MSBF;
 FILE_TYPE = BINARY;
 FIRST_ELEMENT = TOPLEFT;
 MIN_INDEX = 0;
 NUMBER_OF_AXES = 2;
 ELEMENT_BYTES = 2;
 ELEMENT_OFFSET = "N/A";
 ELEMENT_SCALING_FACTOR = "N/A";
 ELEMENT_TYPE = MSB_UNSIGNED_INTEGER;
 ELEMENT_UNIT = "DATA NUMBER";
 AXIS_LENGTH = (248, 256);
 AXIS_NAME = ("LINE", "SAMPLE");
 AXIS_SCALE_TYPE = ("N/A", "N/A");
 AXIS_UNIT = ("N/A", "N/A");
 END_OBJECT = IMAGE_GRAYSCALE;
 OBJECT = OBJECT_STATISTICS;
 LOCAL_IDENTIFIER = "MPFL_M_IMP_STATISTICS";
 AVERAGE = 894;
 CHECKSUM = 8427608;
 MAXIMUM = 4095;
 MINIMUM = 145;
 STANDARD_DEVIATION = 538.0290;
 END_OBJECT = OBJECT_STATISTICS;
END_OBJECT = TAGGED_IMAGE_GRAYSCALE_SET;
OBJECT = PROPERTY_MAP;
 LOCAL_IDENTIFIER = "MPFL_M_IMP_PROPMAP-1";
 COMMENT = "IDENTIFICATION DATA ELEMENTS";
 PROPERTY_MAP_ENTRY = (
 ("MPFL_M_IMP_IMAGE", PRODUCER_ID, "MIPL OF JPL"),
 ("MPFL_M_IMP_IMAGE", PRODUCER_FULL_NAME, "ALLAN J. RUNKLE"),
 ("MPFL_M_IMP_IMAGE", PRODUCER_INSTITUTION_NAME, "MULTIMISSION IMAGE
PROCESSING LABORATORY, JPL"),
 ("MPFL_M_IMP_IMAGE", PRODUCT_ID, "IMP_EDR-1246943630-
REGULAR-0074051101"),
 ("MPFL_M_IMP_IMAGE", IMAGE_ID, 74051101),
 ("MPFL_M_IMP_IMAGE", COMMAND_SEQUENCE_NUMBER, 74),
 ("MPFL_M_IMP_IMAGE", IMAGE_OBSERVATION_TYPE, REGULAR)
 ("MPFL_M_IMP_IMAGE", FRAME_ID,
 ("MPFL_M_IMP_IMAGE", OBSERVATION_NAME,
"FILTER_5_IN_4_TIERS_FOURTH_QUAD_MONSTER_PAN.3CMD"),
 ("MPFL_M_IMP_IMAGE", IMAGE_TIME,
07T05:13:42.763Z),
 ("MPFL_M_IMP_IMAGE", PLANET_DAY_NUMBER,
1997-07-
3),
```

```
 ("MPFL_M_IMP_IMAGE", MPF_LOCAL_TIME, 13:39:12),
 ("MPFL_M_IMP_IMAGE", EARTH_RECEIVED_START_TIME, 1997-07-
07T23:48:33.442Z),
 ("MPFL_M_IMP_IMAGE", EARTH_RECEIVED_STOP_TIME, 1997-07-
07T23:48:51.766Z)
 END_OBJECT = PROPERTY_MAP;
 OBJECT = PROPERTY_MAP;
 LOCAL_IDENTIFIER = "MPFL_M_IMP_PROPMAP-2";
 COMMENT = "IDENTIFICATION DATA ELEMENTS";
 PROPERTY_MAP_ENTRY = (
 ("MPFL_M_IMP_IMAGE", EXPECTED_PACKETS, 17),
 ("MPFL_M_IMP_IMAGE", RECEIVED_PACKETS, 17),
 ("MPFL_M_IMP_IMAGE", APPLICATION_PACKET_ID, 34),
 ("MPFL_M_IMP_IMAGE", APPLICATION_PACKET_NAME, "SCI_IMG_3"),
 ("MPFL_M_IMP_IMAGE", EXPOSURE_DURATION, 46.0000),
 ("MPFL_M_IMP_IMAGE", EXPOSURE_TYPE,
 ("MPFL_M_IMP_IMAGE", EXPOSURE_COUNT,
 ("MPFL_M_IMP_IMAGE", AUTO_EXPOSURE_DATA_CUT,
 ("MPFL_M_IMP_IMAGE", AUTO_EXPOSURE_PIXEL_FRACTION,
 ("MPFL_M_IMP_IMAGE", ERROR_PIXELS,
 ("MPFL_M_IMP_IMAGE", FILTER_NAME,
 ("MPFL_M_IMP_IMAGE", FILTER_NUMBER,
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_TEMPERATURE,
12.0856)),
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_TEMPERATURE_COUNT,
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_DEPLOYMENT_STATE, "DEPLOYED"),
 ("MPFL_M_IMP_IMAGE", DETECTOR_PIXEL_HEIGHT, 23.0000),
 ("MPFL_M_IMP_IMAGE", DETECTOR_PIXEL_WIDTH,, 23.0000),,
 ("MPFL_M_IMP_IMAGE", SOURCE_PRODUCT_ID,
 ("MPFL_M_IMP_IMAGE", SOFTWARE_NAME,
 ("MPFL_M_IMP_IMAGE", SOFTWARE_VERSION_ID,
);
 END_OBJECT = PROPERTY_MAP;
 OBJECT = PROPERTY_MAP;
 LOCAL_IDENTIFIER
 = "MPFL_M_IMP_PROPMAP-3";
 COMMENT = "GEOMETRY & COMPRESSION DATA ELEMENTS";
 PROPERTY_MAP_ENTRY = (
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_AZIMUTH,
 ("MPFL_M_IMP_IMAGE", AZIMUTH_FOV,
 ("MPFL_M_IMP_IMAGE", AZIMUTH_MOTOR_CLICKS,
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_AZIMUTH_METHOD,
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_ELEVATION,
 ("MPFL_M_IMP_IMAGE", ELEVATION_FOV,
 ("MPFL_M_IMP_IMAGE", ELEVATION_MOTOR_CLICKS,
 ELEVATION_MOTOR_CLICKS,
 ("MPFL_M_IMP_IMAGE", INSTRUMENT_ELEVATION_METHOD,
 ("MPFL_M_IMP_IMAGE", SURFACE_BASED_INST_AZIMUTH,
 ("MPFL_M_IMP_IMAGE", SURFACE_BASED_INST_ELEVATION,
 ("MPFL_M_IMP_IMAGE", SURFACE_BASED_INST_METHOD,
QUATERNION"),
 ("MPFL_M_IMP_IMAGE", POSITIVE_ELEVATION_DIRECTION, UP),
 ("MPFL_M_IMP_IMAGE", SOLAR_AZIMUTH,
 ("MPFL_M_IMP_IMAGE", SOLAR_ELEVATION,
 ("MPFL_M_IMP_IMAGE", LANDER_SURFACE_QUATERNION,
-0.0293, 0.9771)),
 ("MPFL_M_IMP_IMAGE", COMMAND_NAME,
"IMP_IMAGE_AZ_EL"),
 ("MPFL_M_IMP_IMAGE", COMMAND_DESC, "This is the image
taken by the IMP using
```

```
 262.8440),
```

                262.8440),
                65.8379),
                65.8379),
    ```
265.3520),
```

265.3520),
14.0032),
14.0032),
551),
551),
"TELEMETRY"),
"TELEMETRY"),
-43.0955),
-43.0955),
13.5656),
13.5656),
96),
96),
"TELEMETRY"),
"TELEMETRY"),
61.6981),
61.6981),
-45.7609),
-45.7609),
"L_FRAME-
"L_FRAME-
(0.2102, -0.0146,

```
(0.2102, -0.0146,
```

```
 ("MPFL_M_IMP_IMAGE", absolute azimuth
& elevation as the
 ("MPFL_M_IMP_IMAGE", coordinate
system"),
 ("MPFL_M_IMP_IMAGE", TLM_CMD_DISCREPANCY_FLAG,
 ("MPFL_M_IMP_IMAGE", DOWNLOAD_TYPE,
 ("MPFL_M_IMP_IMAGE", DARK_CURRENT_DOWNLOAD_FLAG,
 ("MPFL_M_IMP_IMAGE", DARK_CURRENT_CORRECTION_FLAG,
 ("MPFL_M_IMP_IMAGE", FLAT_FIELD_CORRECTION_FLAG,
 ("MPFL_M_IMP_IMAGE", BAD_PIXEL_REPLACEMENT_FLAG,
 ("MPFL_M_IMP_IMAGE", SHUTTER_EFFECT_CORRECTION_FLAG,
 ("MPFL_M_IMP_IMAGE", SQRT_COMPRESSION_FLAG,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_BLK_SIZE,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_BLOCKS,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_MODE,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_PARAM,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_QUALITY,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_QUANTZ_TBL_ID,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_QUANTZ_TYPE,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_SYNC_BLKS,
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_NAME,
COSINE TRANSFORM (DCT);
 ("MPFL_M_IMP_IMAGE",
ARITHMETIC/RATIO/LCT"),
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_RATE, 2.0187),
 ("MPFL_M_IMP_IMAGE", INST_CMPRS_RATIO, 5.9446),
 ("MPFL_M_IMP_IMAGE", PIXEL_AVERAGING_HEIGHT, 1),
 ("MPFL_M_IMP_IMAGE", PIXEL_AVERAGING_WIDTH, 1),
 ("MPFL_M_IMP_IMAGE", RICE_START_OPTION, -1),
 ("MPFL_M_IMP_IMAGE", RICE_OPTION_VALUE,
 -1),
 ("MPFL_M_IMP_IMAGE", SQRT_MINIMUM_PIXEL,
 0),
 ("MPFL_M_IMP_IMAGE", SQRT_MAXIMUM_PIXEL, 0)
);
 END_OBJECT = PROPERTY_MAP;
 OBJECT = FILE_SECTION;
 OBJECT = FILE_BINARY_FIXED;
 LOCAL_IDENTIFIER = "MPFL_M_IMP_IMAGE_FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 12345;
 FILE_NAME = "N2075WE02R.FIT";
 FILE_TYPE = BINARY;
 MAX_RECORD_BYTES = 512;
 RECORD_TYPE = FIXED;
 END_OBJECT = FILE_BINARY_FIXED;
 END_OBJECT = FILE_SECTION;
END_OBJECT = PRODUCT_IMAGE_GRAYSCALE;
```


### 1.1.4

This section provides a high level discussion of the parallelisms between the PDS3 IMAGE Data Object Description (DoD) and the PDS4 IMAGE_GRAYSCALE class.

The PDS3 IMAGE (DoD) by definition was very flexible in that the DoD could define both simple Images and very complex types of Images depending on the representation of the data product byte stream. An example of a simple image is where the data product byte stream is represented as a 2-dimensional, singlebanded, non-interleaved, no prefix or suffix byte construct. A more complex example of an image is where the data product byte stream is represented by any of the following:
a. Line or Sample interleaved data
b. Row prefix and/or suffix bytes
c. Multi-banded data
d. Line and Sample display counter direction

The PDS4 IMAGE_GRAYSCALE class has been specifically designed to be more restrictive in the permissible representations of the data object byte stream. And as such, these restrictions ensure a more rigorous set of archival quality image constructs. The PDS4 IMAGE_GRAYSCALE class supports the following variations:

1. Axis order - the default, FAST2SLOW, indicates that each axis on the left varies faster than the axis to the right (i.e., the leftmost axis varies the fastest; with the axis to the most right varying the slowest).
2. Byte order - the default, MSBF, indicates that the bytes are represented as most-significant-byte-first.
3. First element - the default, TOPLEFT, indicates that the first element of the byte stream is the top leftmost element.
4. Minimum index - the default, 0 , indicates that the bytes are numbered sequentially starting from 0 .

### 2.0 Table_Base - Heterogeneous Repeating Record of Scalars

### 2.1 TABLE_CHARACTER

This section describes the TABLE_CHARACTER extension of the PDS4 Table_Base (i.e., Heterogeneous repeating record of Scalars) class where a contiguous stream of ASCII characters, assembled as fixed-width fields, maps the "items" contained in a TABLE_CHARACTER file.

This section identifies a mapping of the PDS3 TABLE object to the PDS4 TABLE_CHARACTER file construct and demonstrates how the byte stream (e.g., sequence of bits) can be described by both a PDS3 label and a PDS4 label.

### 2.1.1 TABLE_BASE Class Description and Schema

Figure 2.1-1 depicts a representation of the PDS4 TABLE_BASE class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.


OBJECT $=$ PROPERTY_MAP
LOCAL IDENTIFIER
COMMENT
PROPERTY_MAP_ENTRY
END_OBJECT $=$ PROPERTY_MAP
END OBJECT $=$ TAGGED_TABLE_CHARACTER_SET

Optional
Required
Optional
Required

1
1
1
ERROR_CONSTANT
INVALID_CONSTANT
MISSING_CONSTANT
NOI_APPLICABLE_CONSTANT
SATURATED_CONSTANT
UNKNOWN_CONSTANT
END_OBJECT $=$ SPECIAL_CONSTANTS
END_OBJECT = TABLE_CHARACTER_FIELD
END_OBJECT = TABLE_CHARACTER
END_OBJECT = TABLE_CHARACTER

Figure 2.1-1. Diagram of the TABLE_CHARACTER Schema

From Figure 2.1-1, the overall structure of the TABLE_CHARACTER data object description can be easily discerned and understood.

1. The parent class, the TAGGED_TABLE_CHARACTER_SET class, is comprised of four sub-classes:

- DESCRIPTION_SECTION class
- HEADER class
- TABLE_CHARACTER class
- PROPERTY_MAP class

2. The DESRIPTION_SECTION class may optionally exist once and only once within the context of the the TAGGED_TABLE_CHARACTER_SET class.
3. The DESCRIPTION_SECTION class consists of a single required nonrepeating data element.
4. The HEADER class may optionally exist once and only once within the context of the the TAGGED_TABLE_CHARACTER_SET class.
5. The HEADER class consists of five required non-repeating data elements, and three optional non-repeating data elements..
6. The TABLE_CHARACTER class must exist once and only once within the context of the TAGGED_TABLE_CHARACTER_SET class.
7. The TABLE_CHARACTER class is comprised of six required non-repeating data elements, a single optional non-repeating data element, and a single required repeating sub-class, the TABLE_CHARACTER_FIELD sub-class
8. The TABLE_CHARACTER_FIELD class must exist once but may exist many times within the context of the TABLE_CHARACTER class.
9. The TABLE_CHARACTER_FIELD class is comprised of five required nonrepeating data elements, ten optional non-repeating data elements, and two optional non-repeating sub-classes, the OBJECT_STATISTICS sub-class and the SPECIAL_CONSTANTS sub-class.
10. The OBJECT_STATISTICS class may optionally exist once and only once within the context of the the TABLE_CHARACTER_FIELD class.
11. The OBJECT_STATISTICS class is comprised of a single required nonrepeating data element, and five optional non-repeating data elements.
12. The SPECIAL_CONSTANTS class may optionally exist once and only once within the context of the the TABLE_CHARACTER_FIELD class.
13. The SPECIAL_CONSTANTS class is comprised of six required non-repeating data elements.
14. The PROPERTY_MAP class may optionally exist once and only once within the context of the the TAGGED_TABLE_CHARACTER_SET class.
15. The PROPERTY_MAP class consists of two required non-repeating data elements and a single optional non-repeating data element.

### 2.1.2 TABLE_CHARACTER Data Product Byte Stream

Figure 2.1-2 depicts a representation a TABLE_CHARACTER byte-stream. The first two rows of the diagram are for the purposes of illustrating the byte positions relative to the TABLE fields and would not normally be contained in a data product file. The remaining twenty+ rows illustrate a typical TABLE_CHARACTER data product where the fields are fixed-width ASCII across the rows in the file.

With respect to the data product:

1. There are 3727 rows of data (of which $3700+$ rows have been omitted from the diagram for ease of reading)
2. There are 10 fields in each row / record in this example file.
3. Each field is fixed-width across all rows in this example file.
4. Each field is comprised of ASCII characters.
5. There are 88 bytes in each row / record in this example file.

| 88 Bytes |  |  | Recoro |
| :---: | :---: | :---: | :---: |
| Row 1 | <CR> | <LF> | 1 |
| Row 2 | <CR> | <LF> | 2 |
| ... | <CR> | <LF> | ... |
| Row 3727 | <CR> | <LF> | 3727 |



Figure 2.1-2. Diagram of the TABLE_CHARACTER Byte Stream

Figure 2.1.1-3 depicts the above TABLE_CHARACTER byte-stream as it would be represented as an Excel spreadsheet. This representation is helpful in understanding how the fields are represented in the data product label. Specifically that the TABLE_CHARACTER schema is compatible with most database management and spreadsheet applications. Note that the first three rows are for purposes of illustrating how the data relates to the TABLE_CHARACTER fields defined in the data product label. These first three rows would not normally be present in a data product file. The remaining twenty+ rows illustrate a typical TABLE_CHARACTER data product where the number of
fields Is fixed across the rows in the file, each field has a fixed-width, each field is comprised of ASCII characters, and where each row is delimited by a row delimiter (e.g., <CR><LF>).

|  | A | B | C | D | E | F | G | H | I | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |
| 2 | Fieldrs | Field 2 | Field 3 | Field 4 | Field 5 | Field 6 | Field 7 | Field 8 | Field 9 | Field 10 |
| 3 |  |  |  |  |  |  |  |  |  |  |
| 4 | 91 | 0.088 | 91.06951 | 5.156 | 0.42 | 0.42656 | 125.5472 | 4.7691 | 15300 | SS091A990R6M1.IMG |
| 5 | 91 | 0.088 | 91.06951 | 5.156 | 0.42 | 0.42656 | 125.5472 | 4.7691 | 15300 | SS091A990R6M1.IMG |
| 6 | 91 | 0.088 | 91.07029 | 5.155 | 0.42 | 0.42652 | 125.5505 | 4.7692 | 15300 | SS091A990R6M1.IMG |
| 7 | 91 | 0.089 | 91.07105 | 5.155 | 0.42 | 0.42657 | 125.5503 | 4.7692 | 15300 | SS091A990R6M1.IMG |
| 8 | 91 | 0.377 | 91.35854 | 2.225 | 0.72 | 0.56432 | 147.8544 | 19.1305 | 4314.6 | SS091AA00R6M1.IMG |
| 9 | 91 | 0.377 | 91.35919 | 2.01 | 0.64 | 0.51506 | 197.0222 | 18.7507 | 4314.6 | SS091AA00R6M1.IMG |
| 10 | 91 | 0.378 | 91.35978 | 1.928 | 0.7 | 0.52962 | 199.8813 | 21.4121 | 4314.6 | SS091AA00R6M1.IMG |
| 11 | 91 | 0.379 | 91.36042 | 1.366 | 1.71 | 0.71758 | 185.2322 | 180 | 4314.6 | SS091AA00R6M1.IMG |
| 12 | 91 | 0.379 | 91.36104 | 1.494 | 1.47 | 0.69841 | 179.9326 | 81.2461 | 4314.6 | SS091AA00R6M1.IMG |
| 13 | 91 | 0.38 | 91.36165 | 1.908 | 0.83 | 0.58457 | 171.1649 | 25.8445 | 4314.6 | SS091AA00R6M1.IMG |
| 14 | 91 | 0.38 | 91.36229 | 1.677 | 1.13 | 0.65682 | 169.245 | 42.4206 | 4314.6 | SS091AA00R6M1.IMG |
| 15 | 91 | 0.381 | 91.36289 | 1.72 | 0.87 | 0.57686 | 237.0473 | 30.6785 | 4314.6 | SS091AA00R6M1.IMG |
| 16 | 91 | 0.382 | 91.36415 | 2.645 | 0.49 | 0.4009 | 323.6505 | 10.7665 | 4314.6 | SS091AA00R6M1.IMG |
| 17 | 91 | 0.383 | 91.36477 | 4.752 | 0.4 | 0.39856 | 10.69647 | 4.8413 | 4314.6 | SS091AA00R6M1.IMG |
| 18 | 91 | 0.384 | 91.36543 | 4.521 | 0.4 | 0.39494 | 358.6616 | 5.1823 | 4314.6 | SS091AA00R6M1.IMG |
| 19 | 91 | 0.384 | 91.36604 | 3.427 | 0.39 | 0.38187 | 13.80957 | 6.6027 | 4314.6 | SS091AA00R6M1.IMG |
| 20 | 91 | 0.385 | 91.36663 | 3.239 | 0.39 | 0.37979 | 4.907225 | 7.0238 | 4314.6 | SS091AA00R6M1.IMG |
| 21 | 91 | 0.385 | 91.36729 | 2.826 | 0.42 | 0.39259 | 317.4235 | 8.7466 | 4314.6 | SS091AA00R6M1.IMG |
| 22 | 91 | 0.386 | 91.36792 | 2.84 | 0.42 | 0.39058 | 321.6082 | 8.6859 | 4314.6 | SS091AA00R6M1.IMG |
| 23 | 91 | 0.387 | 91.36851 | 3.124 | 0.39 | 0.37922 | 339.0397 | 7.3389 | 4314.6 | SS091AA00R6M1.IMG |
| 24 | 91 | 0.387 | 91.36917 | 3.317 | 0.39 | 0.37703 | 352.7208 | 6.769 | 4314.6 | SS091AA00R6M1.IMG |
| 25 | <omitted 3700+ lines> |  |  |  |  |  |  |  |  |  |
| 26 | 151 | 0.229 | 151.2046 | 2.98 | 0.43 | 0.40324 | 293.9652 | 8.3952 | 7140 | SS1520900R6M1.IMG |
| 27 | 151 | 0.23 | 151.2053 | 3.072 | 0.46 | 0.41565 | 268.8221 | 8.6166 | 7140 | SS1520900R6M1.IMG |

Figure 2.1-3. Excel Spreadsheet Representation of the TABLE_CHARACTER Byte Stream

### 2.1.3 TABLE_CHARACTER Label Scheme

This section depicts how the TABLE_CHARACTER byte-scheme, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 TABLE_CHARACTER class is the successor to the PDS3 TABLE object.

### 2.1.3.1 PDS3 TABLE_CHARACTER Label Scheme

The data product depicted in Figure 2.1-2 could be described in PDS3 by use of the TABLE and COLUMN objects:

```
PDS_VERSION_ID = PDS3
```

| RECORD_TYPE | = FIXED_LENGTH |
| :---: | :---: |
| RECORD_BYTES | = 88 |
| FILE_RECORDS | = 3727 |
| $\wedge$ table | = "CHAR_TABLE_COLLAPSED.TAB" |
| DATA_SET_ID | = "PHX-M-TT-5-WIND-VEL-DIR-V1.0" |
| MISSION_NAME | = "PHOENIX" |
| INSTRUMENT_HOST_NAME | = "PHOENIX" |
| INSTRUMENT_NAME | = "TELLTALE" |
| PRODUCT_ID | = "TELLTALE_91_151" |
| TARGET_NAME | = "MARS" |
| SPACECRAFT_CLOCK_START_COUNT | = "904250279.448" |
| SPACECRAFT_CLOCK_STOP_COUNT | = "909588864.598" |
| START_TIME | = 2008-08-26T20:36:36.856 |
| STOP_TIME | = 2008-10-27T15:32:50.952 |
| PRODUCT_CREATION_TIME | = 2009-04-15 |
| OBJECT | $=$ TABLE |
| INTERCHANGE_FORMAT | = ASCII |
| ROW_BYTES | = 88 |
| ROWS | = 3727 |
| COLUMNS | $=10$ |
| OBJECT | $=$ COLUMN |
| NAME | = "SOL" |
| DATA_TYPE | = ASCII_INTEGER |
| START_BYTE | = 1 |
| BYTES | $=3$ |
| FORMAT | = "I3" |
| UNIT | = "N/A" |
| DESCRIPTION | = "PHOENIX Sol number" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "LTST" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | $=5$ |
| BYTES | $=5$ |
| FORMAT | = "F5.3" |
| UNIT | = "N/A" |
| DESCRIPTION | = "Local True Solar Time" |
| END_OBJECT | $=$ COLUMN |
| OBJECT | = COLUMN |
| NAME | = "LMST" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | = 11 |
| BYTES | = 9 |
| FORMAT | = "F9.5" |
| UNIT | = "N/A" |
| DESCRIPTION | = "Local Mean Solar Time" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "V" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | $=21$ |
| BYTES | $=5$ |
| FORMAT | = "F5.3" |
| UNIT | = "METERS/SECOND" |
| DESCRIPTION | = "Wind speed in meters per second |
| END_OBJECT | $=$ COLUMN |


| OBJECT | $=$ COLUMN |
| :---: | :---: |
| NAME | = "DV+" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | = 27 |
| BYTES | $=4$ |
| FORMAT | = "F4.2" |
| UNIT | = "METERS/SECOND" |
| DESCRIPTION | = "Error in wind speed (positive)" |
| END_OBJECT | $=$ COLUMN |
| OBJECT | = COLUMN |
| NAME | = "DV-" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | $=32$ |
| BYTES | $=7$ |
| FORMAT | = "F7.5" |
| UNIT | = "METERS/SECOND" |
| DESCRIPTION | = "Error in wind speed (negative)" |
| END_OBJECT | $=$ COLUMN |
| OBJECT | = COLUMN |
| NAME | = "DIR" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | $=40$ |
| BYTES | = 10 |
| FORMAT | = "F10.6" |
| UNIT | = "DEGREES" |
| DESCRIPTION | = "Wind direction in degrees given in meteorological convention ( $0=$ from $N$, $90=$ from $E, 180=$ from $S, 270=$ from W)" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "DDIR" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | $=51$ |
| BYTES | $=8$ |
| FORMAT | = "F8.4" |
| UNIT | = "DEGREES" |
| DESCRIPTION | = "Error in direction (given in degrees). If dv+ is larger than $v$, then this is set to 180" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "EXPOSURE TIME" |
| DATA_TYPE | = ASCII_REAL |
| START_BYTE | = 60 |
| BYTES | $=7$ |
| FORMAT | = "F7.1" |
| UNIT | = "MILLISECONDS" |
| DESCRIPTION | = "Exposure time by SSI in milliseconds" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "FILE NAME" |
| DATA_TYPE | = CHARACTER |
| START_BYTE | = 69 |
| BYTES | $=17$ |
| FORMAT | = "A17" |
| UNIT | = "N/A" |
| DESCRIPTION | = "Image filename used for the analysis" |

```
 END_OBJECT = COLUMN
END_OBJECT = TABLE
END
```


### 2.1.3.2 PDS4 TABLE_CHARACTER Label Scheme

The same data product can also be described in PDS4 by use of the TABLE_CHARACTER and the TABLE_FIELD_CHARACTER classes.
\#PDS4\#
/* ******* LABEL TEMPLATE - PRODUCT_TABLE_CHARACTER ******* */
OBJECT = PRODUCT_TABLE_CHARACTER;
OBJECT = IDENTIFICATION_SECTION;
DD_VERSION_ID = "DD_VERSION_ID";
IDENTIFIER = "PDS4_ATM_PRODUCT_TABLE_CHARACTER_ID:V1.0";
LABEL_REVISION_NOTE = "20090101:1.0 - initial version;
20090102:1.1 - added another column";
PDS_VERSION_ID = "PDS4.0";
PRODUCT_CREATION_TIME = 2009-04-15;
TITLE = "PHOENIX Mars Wind Experiment";
URN $\quad=\quad$ "http://URN:PHX-M-TT-5-WIND-VEL-DIR-
V1.0:PDS4_ATM_PRODUCT_TABLE_CHARACTER_ID:1.0";
VERSION = "1.0";
END_OBJECT = IDENTIFICATION_SECTION;
OBJECT = DESCRIPTION_SECTION;
DESCRIPTION = "ANNOTATION FOR THE PRODUCT GOES HERE.";
END_OBJECT = DESCRIPTION_SECTION;
OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
COMMENT = "Observation Intent";
SPACECRAFT_CLOCK_START_COUNT = "904250279.448";
SPACECRAFT_CLOCK_STOP_COUNT = "909588864.598";
START_TIME $=$ 2008-08-26T20:36:36.856;
STOP_TIME = 2008-10-27T15:32:50.952;
END_OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
OBJECT = DATASET_SECTION;
DATA_SET_ID = "PHX-M-TT-5-WIND-VEL-DIR-V1.0";
END_OBJECT $=$ DATASET_SECTION;
OBJECT = INSTRUMENT_SECTION;
INSTRUMENT_ID_NEW = "TELLTALE";
END_OBJECT = INSTRUMENT_SECTION;
OBJECT = MISSION_SECTION;
MISSION_NAME = "PHOENIX";
END_OBJECT = MISSION_SECTION;
OBJECT = NODE_SECTION;

```
 NODE_NAME = "PLANETARY ATMOSPHERES";
END_OBJECT = NODE_SECTION;
OBJECT = TARGET_SECTION;
 TARGET_NAME = MARS;
END_OBJECT = TARGET_SECTION;
OBJECT = INSTRUMENT_HOST_SECTION;
 INSTRUMENT_HOST_ID = PHX;
END_OBJECT = INSTRUMENT_HOST_SECTION;
OBJECT = TAGGED_TABLE_CHARACTER_SET;
 OBJECT = TABLE_CHARACTER;
 DATA_LOCATION = ("PHX_M_TT_TABLE_FILE",1);
 LOCAL_IDENTIFIER = "PHX_M_TT_TABLE";
 FILE_TYPE = CHARACTER;
 NUMBER_OF_FIELDS = 10;
 NUMBER_OF_ROWS = 3727;
 ROW_BYTES = 88;
 OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "SOL";
 FIELD_NUMBER = 1;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_LOCATION = 1;
 FIELD_LENGTH = 3;
 FIELD_FORMAT = "I3";
 FIELD_MIN_PHYSICAL = 91;
 FIELD_MAX_PHYSICAL = 151;
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "PHOENIX Sol number";
 END_OBJECT = TABLE_CHARACTER_FIELD;
 OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "LTST";
 FIELD_NUMBER = 2;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 5;
 FIELD_LENGTH = 5;
 FIELD_FORMAT = "F5.3";
 FIELD_MIN_PHYSICAL = 0.088078704;
 FIELD_MAX_PHYSICAL = 0.230243056;
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "Local True Solar Time";
 END_OBJECT = TABLE_CHARACTER_FIELD;
 OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "LMST";
 FIELD_NUMBER = 3;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 11;
 FIELD_LENGTH = 9;
 FIELD_FORMAT = "F9.5";
 FIELD_MIN_PHYSICAL = 91.0695122;
 FIELD_MAX_PHYSICAL = 151.2052778;
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "Local Mean Solar Time";
 END_OBJECT = TABLE_CHARACTER_FIELD;
```

```
OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "V";
 FIELD_NUMBER = 4;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 21;
 FIELD_LENGTH = 5;
 FIELD_FORMAT = "F5.3";
 FIELD_MIN_PHYSICAL = 3.072451472;
 FIELD_MAX_PHYSICAL = 5.15605715;
 FIELD_UNIT = "METERS/SECOND";
 FIELD_DESCRIPTION = "Wind speed in meters per second";
END_OBJECT = TABLE_CHARACTER_FIELD;
OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "DV+"
 FIELD_NUMBER = 5;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 27;
 FIELD_LENGTH = 4;
 FIELD_FORMAT = "F4.2";
 FIELD_MIN_PHYSICAL = 0.428682136;
 FIELD_MAX_PHYSICAL = 0.46032408;
 FIELD_UNIT = "METERS/SECOND";
 FIELD_DESCRIPTION = "Error in wind speed (positive)";
END_OBJECT = TABLE_CHARACTER_FIELD;
OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "DV-";
 FIELD_NUMBER = 6;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 32;
 FIELD_LENGTH = 7;
 FIELD_FORMAT = "F7.5";
 FIELD_MIN_PHYSICAL = 0.415653998;
 FIELD_MAX_PHYSICAL = 0.42656498;
 FIELD_UNIT = "METERS/SECOND";
 FIELD_DESCRIPTION = "Error in wind speed (negative)";
END_OBJECT = TABLE_CHARACTER_FIELD;
OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "DIR";
 FIELD_NUMBER = 7;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 40;
 FIELD_LENGTH = 10;
 FIELD_FORMAT = "F10.6";
 FIELD_MIN_PHYSICAL = 125.5471521;
 FIELD_MAX_PHYSICAL = 268.8220941;
 FIELD_UNIT = "DEGREES";
 FIELD_DESCRIPTION = "Wind direction in degrees given in
 meteorological convention (0 = from N,
 90 = from E, 180 = from S, 270 = from
 W)";
END_OBJECT = TABLE_CHARACTER_FIELD;
OBJECT = TABLE_CHARACTER_FIELD
 FIELD_NAME = "DDIR";
 FIELD_NUMBER = 8;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 51;
 FIELD_LENGTH = 8;
 FIELD_FORMAT = "F8.4";
 FIELD_MIN_PHYSICAL = 4.769160219;
```

```
 FIELD_MAX_PHYSICAL = 8.616672754;
 FIELD_UNIT = "DEGREES";
 FIELD_DESCRIPTION = "Error in direction (given in degrees).
 If dv+ is larger than v, then this is
 set to 180";
 END_OBJECT = TABLE_CHARACTER_FIELD;
 OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "EXPOSURE TIME";
 FIELD_NUMBER = 9;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_LOCATION = 60;
 FIELD_LENGTH = 7;
 FIELD_FORMAT = "F7.1";
 FIELD_MIN_PHYSICAL = 7140;
 FIELD_MAX_PHYSICAL = 15300;
 FIELD_UNIT = "MILLISECONDS";
 FIELD_DESCRIPTION = "Exposure time by SSI in milliseconds";
END_OBJECT = TABLE_CHARACTER_FIELD;
OBJECT = TABLE_CHARACTER_FIELD;
 FIELD_NAME = "FILE NAME";
 FIELD_NUMBER = 10;
 FIELD_DATA_TYPE = CHARACTER;
 FIELD_LOCATION = 69;
 FIELD_LENGTH = 17;
 FIELD_FORMAT = "A17";
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "Image filename used for the analysis";
 END_OBJECT = TABLE_CHARACTER_FIELD;
 END_OBJECT = TABLE_CHARACTER;
END_OBJECT = TAGGED_TABLE_CHARACTER_SET;
OBJECT = PROPERTY_MAP;
 PROPERTY_MAP_ENTRY = (
 ("PHX_M_TT_WIND_VEL", PRODUCT_ID, "TELLTALE_91_151"),
 ("PHX_M_TT_WIND_VEL", PRODUCT_VERSION_ID, "V1.0"),
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_HOST_NAME, "PHOENIX"),
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_HOST_ID, "PHX"),
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_NAME,
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_ID,
 ("PHX_M_TT_WIND_VEL", MISSION_NAME,
 ("PHX_M_TT_WIND_VEL", PRODUCT_CREATION_TIME, 2009-04-15)
);
END_OBJECT = PROPERTY_MAP;
OBJECT = FILE_SECTION;
 OBJECT = FILE_CHARACTER_FIXED;
 LOCAL_IDENTIFIER = "PHX_M_TT_TABLE_FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "PDS4_ATM_TABLE_CHAR.TAB";
 FILE_TYPE = CHARACTER;
 MAX_RECORD_BYTES = 3727;
 RECORD_TYPE = FIXED;
 END_OBJECT = FILE_CHARACTER_FIXED;
END_OBJECT = FILE_SECTION;
```

```
END_OBJECT = PRODUCT_TABLE_CHARACTER;
```


### 2.1.4 PDS4 TABLE_CHARACTER and PDS3 TABLE PARALLELISMS

This section provides a high level discussion of the parallelisms between the PDS3 TABLE Data Object Description (DoD) and the PDS4 TABLE_CHARACTER class.

The PDS3 TABLE (DoD) by definition was very flexible in that the DoD could define both simple Tables and very complex types of Tables depending on the representation of the data product byte stream. An example of a simple table is where the data product byte stream is represented as a 2-dimensional construct where neither dimension has either prefix or suffix bytes. A more complex example of a table is where the data product byte stream is represented by any of the following:
a. Row prefix and/or suffix bytes
b. The data is represented as row major storage
c. The data does not contain any contiguous unused or spare bytes

The PDS4 TABLE_CHARACTER class has been specifically designed to be more restrictive in the permissible representations of the data object byte stream. And as such, these restrictions ensure a more rigorous set of archival quality table constructs. In fact, the PDS4 TABLE_CHARACTER class is so rigid that there are variants to the TABLE_BASE class.

### 2.2 TABLE_BINARY

This section describes the TABLE_BINARY extension of the PDS4 Table_Base (i.e., Heterogeneous repeating record of Scalars) class where a contiguous stream of BINARY data, assembled as fixed-width fields, maps the "items" contained in a TABLE_BINARY file.

This section identifies a mapping of the PDS3 TABLE object to the PDS4 TABLE_BINARY file construct and demonstrates how the byte stream (e.g., sequence of bits) can be described by both a PDS3 label and a PDS4 label.

### 2.2.1 TABLE_BASE Class Description and Schema

Figure 2.2-1 depicts a representation of the PDS4 TABLE_BASE class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.

| ```OBJECT = TAGGED_TABLE_BINARY_SET OBJECT = DESCRIPTION_SECTION DESCRIPTION END_OBJECT = DESCRIPIION_SECTION OBJECT = HEADER DATA_LOCATION LOCAL_IDENTIFIER COMMENT BYTES DESCRIPTION EXTERNAL_STANDARD FILE_TYPE NAME END_OBJECT = HEADER``` | Req/Opt <br> Optional <br> Required <br> Optional <br> Required <br> Required <br> Optional <br> Required <br> Optional <br> Required <br> Required <br> Optional | Cardinality <br> 1 <br> 1 <br>  <br> 1 |
| :---: | :---: | :---: |
| ```OBJECT = TABLE_BINARY DATA_LOCATION LOCAL_IDENTIFIER COMMENT FILE_TYPE NUMBER_OF_FIELDS NUMBER_OF_ROWS ROW_BYTES``` | Required <br> Required <br> Required <br> Optional <br> Required <br> Required <br> Required <br> Required | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| ```OBJECT = TABLE_BINARY_FIELD FIELD_NAME FIELD_DATA_TYPE FIELD_DESCRIPTION FIELD_FORMAT FIELD_LENGTH FIELD_LOCATION FIELD_MAX_LOGICAL FIELD_MAX_PHYSICAL FIELD_MIN_LOGICAL FIELD_MIN_PHYSICAL FIELD_NUMBER FIELD_SCALING_FACTOR FIELD_UNIT FIELD_VALUE_OFFSET``` | Required <br> Required <br> Required <br> Optional <br> Optional <br> Required <br> Required <br> Optional | $\begin{aligned} & \hline 1 \ldots \text { * } \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |



Figure 2.2-1. Diagram of the TABLE_BINARY Schema

From Figure 2.2-1, the overall structure of the TABLE_BINARY data object description can be easily discerned and understood.

1. The parent class, the TAGGED_TABLE_BINARY_SET class, is comprised of four sub-classes:

- DESCRIPTION_SECTION class
- HEADER class
- TABLE_BINARY class
- PROPERTY_MAP class

2. The DESRIPTION_SECTION class may optionally exist once and only once within the context of the the TAGGED_TABLE_BINARY_SET class.
3. The DESCRIPTION_SECTION class consists of a single required nonrepeating data element.
4. The HEADER class may optionally exist once and only once within the context of the the TAGGED_TABLE_BINARY_SET class.
5. The HEADER class consists of five required non-repeating data elements, and three optional non-repeating data elements.
6. The TABLE_BINARY class must exist once and only once within the context of the TAGGED_TABLE_BINARY_SET class.
7. The TABLE_BINARY class is comprised of six required non-repeating data elements, a single optional non-repeating data element, and a single required repeating sub-class, the TABLE_BINARY_FIELD sub-class
8. The TABLE_BINARY_FIELD class must exist once but may exist many times within the context of the TABLE_BINARY class.
9. The TABLE_BINARY_FIELD class is comprised of five required nonrepeating data elements, ten optional non-repeating data elements, and two optional non-repeating sub-classes, the OBJECT_STATISTICS sub-class and the SPECIAL_CONSTANTS sub-class.
10. The OBJECT_STATISTICS class may optionally exist once and only once within the context of the the TABLE_BINARY_FIELD class.
11. The OBJECT_STATISTICS class is comprised of a single required nonrepeating data element, and five optional non-repeating data elements.
12. The SPECIAL_CONSTANTS class may optionally exist once and only once within the context of the the TABLE_BINARY_FIELD class.
13. The SPECIAL_CONSTANTS class is comprised of six required non-repeating data elements.
14. The PROPERTY_MAP class may optionally exist once and only once within the context of the the TAGGED_TABLE_BINARY_SET class.
15. The PROPERTY_MAP class consists of two required non-repeating data elements and a single optional non-repeating data element.

### 2.2.2 TABLE_BINARY Data Product Byte Stream

Figure 2.2-2 depicts a representation a TABLE_BINARY byte-stream. The first two rows of the diagram are for the purposes of illustrating the byte positions relative to the TABLE fields and would not normally be contained in a data product file. The remaining twenty+ rows illustrate a typical TABLE_BINARY data product where the fields are fixed-width BINARY data across the rows in the file.

Note that in the following figures, for purposes of representing the binary data in a "readable" format, the data are represented using ASCII characters. For example, in a binary data stream "<CR><LF>" would be represented as "ODOA" hexadecimal, as "1310" decimal, and as "11011010" MSB_INTEGER_1_BYTE.

With respect to the data product:

1. There are 3727 rows of data (of which $3700+$ rows have been omitted from the diagram for ease of reading)
2. There are 10 fields in each row / record in this example file.
3. Each field is fixed-width across all rows in this example file.
4. Each field is comprised of BINARY data.
5. There are 88 bytes in each row / record in this example file.

| 88 Bytes |  |  | Recoro |
| :---: | :---: | :---: | :---: |
| Row 1 | <CR> | <LF> | 1 |
| Row 2 | <CR> | <LF> | 2 |
| ... | <CR> | <LF> | ... |
| Row 3727 | <CR> | <LF> | 3727 |



Figure 2.2-2. Diagram of the TABLE_BINARY Byte Stream

### 2.2.3 TABLE_BINARY Label Scheme

This section depicts how the TABLE_BINARY byte-scheme, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 TABLE_BINARY class is the successor to the PDS3 TABLE object.

### 2.2.3.1 PDS3 TABLE_BINARY Label Scheme

The data product depicted in Figure 2.2-2 could be described in PDS3 by use of the TABLE and COLUMN objects:

```
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 88
FILE_RECORDS = 3727
^TABLE = "BIN_TABLE_COLLAPSED.TAB"
DATA_SET_ID = "PHX-M-TT-5-WIND-VEL-DIR-V1.0"
MISSION_NAME = "PHOENIX"
INSTRUMENT_HOST_NAME = "PHOENIX"
INSTRUMENT_NAME = "TELLTALE"
PRODUCT_ID = "TELLTALE_91_151"
TARGET_NAME = "MARS"
SPACECRAFT_CLOCK_START_COUNT = "904250279.448"
SPACECRAFT_CLOCK_STOP_COUNT = "909588864.598"
START_TIME = 2008-08-26T20:36:36.856
STOP_TIME = 2008-10-27T15:32:50.952
PRODUCCT_CREATION_TIME = 2009-04-15
OBJECT = TABLE
 INTERCHANGE_FORMAT = BINARY
 ROW_BYTES = 88
 ROWS = 3727
 COLUMNS = 10
 OBJECT = COLUMN
 NAME = "SOL"
 DATA_TYPE = MSB_INTEGER
 START_BYTE = 1
 BYTES = 3
 FORMAT = "I3"
 UNIT = "N/A"
 DESCRIPTION = "PHOENIX Sol number"
 END_OBJECT
 OBJECT
 NAME
 DATA_TYPE = MSB_REAL
 START_BYTE = 5
 BYTES = 5
 FORMAT = "F5.3"
 UNIT = "N/A"
 DESCRIPTION = "Local True Solar Time"
 END_OBJECT = COLUMN
 OBJECT = COLUMN
 NAME = "LMST"
 DATA_TYPE = MSB_REAL
 START_BYTE = 11
 BYTES = 9
 FORMAT = "F9.5"
```

| UNIT | = "N/A" |
| :---: | :---: |
| DESCRIPTION | = "Local Mean Solar Time" |
| END_OBJECT | = COLUMN |
| OBJECT | $=$ COLUMN |
| NAME | = "V" |
| DATA_TYPE | = MSB_REAL |
| START_BYTE | = 21 |
| BYTES | $=5$ |
| FORMAT | = "F5.3" |
| UNIT | = "METERS/SECOND" |
| DESCRIPTION | = "Wind speed in meters per second" |
| END_OBJECT | = COLUMN |
| OBJECT | $=$ COLUMN |
| NAME | = "DV+" |
| DATA_TYPE | = MSB_REAL |
| START_BYTE | = 27 |
| BYTES | $=4$ |
| FORMAT | = "F4.2" |
| UNIT | = "METERS/SECOND" |
| DESCRIPTION | = "Error in wind speed (positive)" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "DV-" |
| DATA_TYPE | = MSB_REAL |
| START_BYTE | = 32 |
| BYTES | $=7$ |
| FORMAT | = "F7.5" |
| UNIT | = "METERS/SECOND" |
| DESCRIPTION | = "Error in wind speed (negative)" |
| END_OBJECT | = COLUMN |
| OBJECT | $=$ COLUMN |
| NAME | = "DIR" |
| DATA_TYPE | = MSB_REAL |
| START_BYTE | = 40 |
| BYTES | = 10 |
| FORMAT | = "F10.6" |
| UNIT | = "DEGREES" |
| DESCRIPTION | = "Wind direction in degrees given in meteorological convention ( $0=$ from $N$, $90=$ from E, $180=$ from $S, 270=$ from W)" |
| END_OBJECT | $=$ COLUMN |
| OBJECT | $=$ COLUMN |
| NAME | = "DDIR" |
| DATA_TYPE | = MSB_REAL |
| START_BYTE | = 51 |
| BYTES | $=8$ |
| FORMAT | = "F8.4" |
| UNIT | = "DEGREES" |
| DESCRIPTION | = "Error in direction (given in degrees). If dv+ is larger than $v$, then this is set to 180" |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| NAME | = "EXPOSURE TIME" |
| DATA_TYPE | = MSB_REAL |
| START_BYTE | = 60 |

```
 BYTES = 7
 FORMAT = "F7.1"
 UNIT = "MILLISECONDS"
 DESCRIPTION = "Exposure time by SSI in milliseconds"
 END_OBJECT = COLUMN
 OBJECT = COLUMN
 NAME = "FILE NAME"
 DATA_TYPE = CHARACTER
 START_BYTE = 69
 BYTES = 17
 FORMAT = "A17"
 UNIT
 DESCRIPTION
END_OBJECT
END_OBJECT = TABLE
END
```


### 2.2.3.2 PDS4 TABLE_BINARY Label Scheme

The same data product can also be described in PDS4 by use of the TABLE_BINARY and the TABLE_FIELD_BINARY classes.
\#PDS4\#
/* ******* LABEL TEMPLATE - PRODUCT_TABLE_BINARY *******/
OBJECT = PRODUCT_TABLE_BINARY;
OBJECT = IDENTIFICATION_SECTION;
DD_VERSION_ID = "DD_VERSION_ID";

IDENTIFIER = "PDS4_ATM_PRODUCT_TABLE_BINARY_ID:V1.0";
LABEL_REVISION_NOTE = "20090101:1.0 - initial version;;
20090102:1.1 - added another column";
PDS_VERSION_ID = "PDS4.0";
PRODUCT_CREATION_TIME = 2009-04-15;
TITLE = "PHOENIX Mars Wind Experiment";
URN $\quad=$ "http://URN:PHX-M-TT-5-WIND-VEL-DIR-
V1.0:PDS4_ATM_PRODUCT_TABLE_BINARY_ID:1.0";
VERSION = "1.0";
END_OBJECT = IDENTIFICATION_SECTION;

OBJECT = DESCRIPTION_SECTION;
DESCRIPTION = "ANNOTATION FOR THE PRODUCT GOES HERE.";
END_OBJECT = DESCRIPTION_SECTION;

OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;

```
 COMMENT = "Observation Intent";
```

        SPACECRAFT_CLOCK_START_COUNT = "904250279.448";
        SPACECRAFT_CLOCK_STOP_COUNT = "909588864.598";
        START_TIME \(\quad=2008-08-26 T 20: 36: 36.856 ;\)
        STOP_TIME \(=\) 2008-10-27T15:32:50.952;
    END_OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
OBJECT = DATASET_SECTION;

```
 DATA_SET_ID = "PHX-M-TT-5-WIND-VEL-DIR-V1.0";
END_OBJECT = DATASET_SECTION;
OBJECT = INSTRUMENT_SECTION;
 INSTRUMENT_ID_NEW = "TELLTALE";
END_OBJECT = INSTRUMENT_SECTION;
OBJECT = MISSION_SECTION;
 MISSION_NAME = "PHOENIX";
END_OBJECT = MISSION_SECTION;
OBJECT = NODE_SECTION;
 NODE_NAME = "PLANETARY ATMOSPHERES";
END_OBJECT = NODE_SECTION;
OBJECT = TARGET_SECTION;
 TARGET_NAME = MARS;
END_OBJECT = TARGET_SECTION;
OBJECT = INSTRUMENT_HOST_SECTION;
 INSTRUMENT_HOST_ID = PHX;
END_OBJECT = INSTRUMENT_HOST_SECTION;
OBJECT = TAGGED_TABLE_BINARY_SET;
 OBJECT = TABLE_BINARY;
 DATA_LOCATION = ("PHX_M_TT_TABLE_FILE",1);
 LOCAL_IDENTIFIER = "PHX_M_TT_TABLE";
 NUMBER_OF_FIELDS = 10;
 NUMBER_OF_ROWS = 3727;
 ROW_BYTES = 88;
 OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "SOL";
 FIELD_NUMBER = 1;
 FIELD_DATA_TYPE = MSB_INTEGER;
 FIELD_LOCATION = 1;
 FIELD_LENGTH = 3;
 FIELD_FORMAT = "I3";
 FIELD_MIN_PHYSICAL = 91;
 FIELD_MAX_PHYSICAL = 151;
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "PHOENIX Sol number";
 END_OBJECT = TABLE_BINARY_FIELD;
 OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "LTST";
 FIELD_NUMBER = 2;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 5;
 FIELD_LENGTH = 5;
 FIELD_FORMAT = "F5.3";
 FIELD_MIN_PHYSICAL = 0.088078704;
 FIELD_MAX_PHYSICAL = 0.230243056;
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "Local True Solar Time";
 END_OBJECT = TABLE_BINARY_FIELD;
```

```
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "LMST";
 FIELD_NUMBER = 3;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 11;
 FIELD_LENGTH = 9;
 FIELD_FORMAT = "F9.5";
 FIELD_MIN_PHYSICAL = 91.0695122;
 FIELD_MAX_PHYSICAL = 151.2052778;
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "Local Mean Solar Time";
END_OBJECT = TABLE_BINARY_FIELD;
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "V";
 FIELD_NUMBER = 4;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 21;
 FIELD_LENGTH = 5;
 FIELD_FORMAT = "F5.3";
 FIELD_MIN_PHYSICAL = 3.072451472;
 FIELD_MAX_PHYSICAL = 5.15605715;
 FIELD_UNIT = "METERS/SECOND";
 FIELD_DESCRIPTION = "Wind speed in meters per second";
END_OBJECT = TABLE_BINARY_FIELD;
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME
 = "DV+";
 FIELD_NUMBER
 = 5;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 27;
 FIELD_LENGTH = 4;
 FIELD_FORMAT = "F4.2";
 FIELD_MIN_PHYSICAL = 0.428682136;
 FIELD_MAX_PHYSICAL = 0.46032408;
 FIELD_UNIT = "METERS/SECOND";
 FIELD_DESCRIPTION = "Error in wind speed (positive)";
END_OBJECT = TABLE_BINARY_FIELD;
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "DV-";
 FIELD_NUMBER = 6;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 32;
 FIELD_LENGTH = 7;
 FIELD_FORMAT = "F7.5";
 FIELD_MIN_PHYSICAL = 0.415653998;
 FIELD_MAX_PHYSICAL = 0.42656498;
 FIELD_UNIT = "METERS/SECOND";
 FIELD_DESCRIPTION = "Error in wind speed (negative)";
END_OBJECT = TABLE_BINARY_FIELD;
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "DIR";
 FIELD_NUMBER = 7;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 40;
 FIELD_LENGTH = 10;
 FIELD_FORMAT = "F10.6";
 FIELD_MIN_PHYSICAL = 125.5471521;
 FIELD_MAX_PHYSICAL = 268.8220941;
 FIELD_UNIT = "DEGREES";
```

```
 FIELD_DESCRIPTION = "Wind direction in degrees given in
 meteorological convention (0 = from
 N, 90 = from E, 180 = from S, 270 =
 from W)";
 END_OBJECT = TABLE_BINARY_FIELD;
 OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "DDIR";
 FIELD_NUMBER = 8;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 51;
 FIELD_LENGTH = 8;
 FIELD_FORMAT = "F8.4";
 FIELD_MIN_PHYSICAL = 4.769160219;
 FIELD_MAX_PHYSICAL = 8.616672754;
 FIELD_UNIT
 = "DEGREES";
 FIELD_DESCRIPTION = "Error in direction (given in
 degrees). If dv+ is larger than v,
 then this is set to 180";
END_OBJECT = TABLE_BINARY_FIELD;
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "
 FIELD_NUMBER = 9;
 FIELD_DATA_TYPE = MSB_REAL;
 FIELD_LOCATION = 60;
 FIELD_LENGTH = 7;
 FIELD_FORMAT = "F7.1";
 FIELD_MIN_PHYSICAL = 7140;
 FIELD_MAX_PHYSICAL = 15300;
 FIELD_UNIT = "MILLISECONDS";
 FIELD_DESCRIPTION = "Exposure time by SSI in
 milliseconds";
 END_OBJECT = TABLE_BINARY_FIELD;
OBJECT = TABLE_BINARY_FIELD;
 FIELD_NAME = "FILE NAME";
 FIELD_NUMBER = 10;
 FIELD_DATA_TYPE = CHARACTER;
 FIELD_LOCATION = 69;
 FIELD_LENGTH = 17;
 FIELD_FORMAT = "A17";
 FIELD_UNIT = "N/A";
 FIELD_DESCRIPTION = "Image filename used for the
 analysis";
 END_OBJECT = TABLE_BINARY_FIELD;
 END_OBJECT = TABLE_BINARY;
END_OBJECT = TAGGED_TABLE_BINARY_SET;
OBJECT = PROPERTY_MAP;
 PROPERTY_MAP_ENTRY = (
 ("PHX_M_TT_WIND_VEL", PRODUCT_ID, "TELLTALE_91_151"),
 ("PHX_M_TT_WIND_VEL", PRODUCT_VERSION_ID,
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_HOST_NAME,
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_HOST_ID,
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_NAME,
 ("PHX_M_TT_WIND_VEL", INSTRUMENT_ID,
 ("PHX_M_TT_WIND_VEL", MISSION_NAME,
 "PHOENIX"),
 ("PHX_M_TT_WIND_VEL", PRODUCT_CREATION_TIME, 2009-04-15)
);
```

```
 END_OBJECT = PROPERTY_MAP;
 OBJECT = FILE_SECTION;
 OBJECT = FILE_BINARY_FIXED;
 LOCAL_IDENTIFIER = "PHX_M_TT_TABLE_FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "PDS4_ATM_TABLE_BIN.TAB";
 FILE_TYPE = BINARY;
 MAX_RECORD_BYTES = 3727;
 RECORD_TYPE = FIXED;
 END_OBJECT = FILE_BINARY_FIXED;
END_OBJECT = FILE_SECTION;
END_OBJECT = PRODUCT_TABLE_BINARY;
```


### 2.2.4 PDS4 TABLE_BINARY and PDS3 TABLE PARALLELISMS

TBD

### 2.3 TABLE_CHARACTER_GROUPED

This section describes the TABLE_CHARACTER_GROUPED extension of the PDS4 Table_Base (i.e., Heterogeneous repeating record of Scalars) class where a contiguous stream of ASCII characters, assembled as sets of repeating fixedwidth fields, maps the "items" contained in a TABLE_CHARACTER_GROUPED file.

This section identifies a mapping of the PDS3 TABLE object to the PDS4 TABLE_CHARACTER_GROUPED file construct and demonstrates how the byte stream (e.g., sequence of bits) can be described by both a PDS3 label and a PDS4 label.

### 2.3.1 TABLE_BASE Class Description and Schema

Figure 2.3-1 depicts a representation of the PDS4 TABLE_BASE class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.

| ```OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET OBJECT = DESCRIPTION_SECTION DESCRIPTION END_OBJECT = DESCRIPIION_SECTION OBJECT = HEADER DATA_LOCATION LOCAL_IDENTIFIER COMMENT BYTES DESCRIPIION EXTERNAL_STANDARD FILE_TYPE NAME END_OBJECT = HEADER``` | Req/Opt <br> Optional <br> Required <br> Optional <br> Required <br> Required <br> Optional <br> Required <br> Optional <br> Required <br> Required <br> Optional | Cardinality <br> 1 <br> 1 <br>  <br> 1 |
| :---: | :---: | :---: |
| ```OBJECT = TABLE_CHARACTER_GROUPED DATA_LOCATION LOCAL_IDENTIFIER COMMENT FILE_TYPE NUMBER_OF_FIELDS NUMBER_OF_ROWS ROW_BYTES``` | Required <br> Required <br> Required <br> Optional <br> Required <br> Required <br> Required <br> Required | $\begin{aligned} & 1 \ldots * \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| $\text { OBJECT }=\text { TABLE_CHARACTER_GROUPED_SEQUENCE }$ REPETITIONS | Required <br> Required | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE $\begin{aligned} & \text { OBJECT = TABLE_CHARACTER_GROU PED_FIELD } \\ & \text { FIELD_NAME } \\ & \text { FIELD_DATA_TYPE } \\ & \text { FIELD_DESCRIPIION } \\ & \text { FIELD_FORMAT } \\ & \text { FIELD_LENGTH } \\ & \text { FIELD_LOCATION } \\ & \text { FIELD_MAX_LOGICAL } \\ & \text { FIELD_MAX_PHYSICAL } \\ & \text { FIELD_MIN_LOGICAL } \\ & \text { FIELD_MIN_PHYSICAL } \\ & \text { FIELD_NUMBER } \\ & \text { FIELD_SCALING_FACTOR } \\ & \text { FIELD_UNIT } \\ & \text { FIELD_VALUE_OFFSET } \end{aligned}$ | Required <br> Required <br> Required <br> Required <br> Optional <br> Optional <br> Required <br> Required <br> Optional | $1 \ldots$ *  <br> $l$  <br> $1 \ldots{ }^{*}$  <br> 1  |



Figure 2.3-1. Diagram of the TABLE_CHARACTER_GROUPED Schema

From Figure 2.3-1, the overall structure of the TABLE_CHARACTER_GROUPED data object description can be easily discerned and understood.

1. The parent class, the TAGGED_TABLE_CHARACTER_GROUPED_SET class, is comprised of four sub-classes:

- DESCRIPTION_SECTION class
- HEADER class
- TABLE_CHARACTER_GROUPED class
- PROPERTY_MAP class

2. The DESRIPTION_SECTION class may optionally exist once and only once within the context of the the TAGGED_TABLE_CHARACTER_SET class.
3. The DESCRIPTION_SECTION class consists of a single required nonrepeating data element.
4. The HEADER class may optionally exist once and only once within the context of the the TAGGED_TABLE_CHARACTER_SET class.
5. The HEADER class consists of five required non-repeating data elements, and three optional non-repeating data elements..
6. The TABLE_CHARACTER class must exist once and only once within the context of the TAGGED_TABLE_CHARACTER_SET class.
7. The TABLE_CHARACTER class is comprised of six required nonrepeating data elements, a single optional non-repeating data element, and a single required repeating sub-class, the TABLE_CHARACTER_FIELD sub-class
8. The TABLE_CHARACTER_FIELD class must exist once but may exist many times within the context of the TABLE_CHARACTER class.
9. The TABLE_CHARACTER_FIELD class is comprised of five required nonrepeating data elements, ten optional non-repeating data elements, and two optional non-repeating sub-classes, the OBJECT_STATISTICS subclass and the SPECIAL_CONSTANTS sub-class.
10. The OBJECT_STATISTICS class may optionally exist once and only once within the context of the the TABLE_CHARACTER_FIELD class.
11. The OBJECT_STATISTICS class is comprised of a single required nonrepeating data element, and five optional non-repeating data elements.
12. The SPECIAL_CONSTANTS class may optionally exist once and only once within the context of the the TABLE_CHARACTER_FIELD class.
13. The SPECIAL_CONSTANTS class is comprised of six required nonrepeating data elements.
14. The PROPERTY_MAP class may optionally exist once and only once within the context of the the TAGGED_TABLE_CHARACTER_SET class.
15. The PROPERTY_MAP class consists of two required non-repeating data elements and a single optional non-repeating data element.

### 2.3.2 TABLE_CHARACTER_GROUPED Data Product Byte Stream

Figure 2.3-2 depicts a representation a TABLE_CHARACTER_GROUPED bytestream. The data object consists of single file containing five character based tables. Each table has a fixed-length structure where a row consists of 19969 bytes. The combined number of rows across all five tables is 2052.

| Byte | 19969 Bytes |  |  | ecor |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Row 1 AFM_D_HEADER_TABLE | <CR> | <LF> | 1 |
| 19970 | Row 2 | <CR> | <LF> | 2 |
| 39939 | Row 3 | <CR> | <LF> | 3 |
| 59908 | Row 4 | <CR> | <LF> | 4 |
| 79877 | Row 1 AFM_F_ERROR_TABLE | <CR> | <LF> | 5 |
| ... | Row 2 | <CR> | <LF> | 6 |
| ... | Row ... | <CR> | <LF> | ... |
| ... | Row 512 | <CR> | <LF> | 516 |
| 1030400 | Row 1 AFM_F_HEIGHT_TABLE | <CR> | <LF> | 517 |
| $\ldots$ | Row 2 | <CR> | <LF> | 518 |
| ... | Row ... | <CR> | <LF> | $\ldots$ |
| ... | Row 512 | <CR> | <LF> | 1028 |
| 20528133 | Row 1 AFM_B_ERROR_TABLE | <CR> | <LF> | 1029 |
| ... | Row 2 | <CR> | <LF> | 1030 |
| ... | Row ... | <CR> | <LF> | $\ldots$ |
| ... | Row 512 | <CR> | <LF> | 1540 |
| 30752261 | Row 1 AFM_B_HEIGHT_TABLE | <CR> | <LF> | 1541 |
| ... | Row 2 | <CR> | <LF> | 1542 |
| ... | Row ... | <CR> | <LF> | $\ldots$ |
| ... | Row 512 | <CR> | $<\mathrm{LF}>$ | 2052 |

Figure 2.3-2. Diagram of the TABLE_CHARACTER_GROUPED Byte Stream
With respect to the data product:

1. There are 2052 rows of data (of which 2000+ rows have been omitted from the diagram for ease of reading).
2. The first of five tables, the AFM_D_HEADER_TABLE, contains 4 rows and 22 columns / fields. Note that under PDS4, the suffix_bytes have been incorporated into an additional column (that occupies 19870 bytes).
3. The second of five tables, the AFM_F_ERROR_TABLE, contains 512 rows and 1536 columns / fields that are a sequence of three columns that are repeated 512 times.
4. The third of five tables, the AFM_F_HEIGHT_TABLE, contains 512 rows and 1536 columns / fields that are a sequence of three columns that are repeated 512 times.
5. The fourth of five tables, the AFM_B_ERROR_TABLE, contains 512 rows and 1536 columns / fields that are a sequence of three columns that are repeated 512 times.
6. The fifth table, the AFM_B_HEIGHT_TABLE, contains 512 rows and 1536 columns / fields that are a sequence of three columns that are repeated 512 times.
7. Each field in each table is fixed-width across all rows in the table.
8. Each field is comprised of ASCII characters.
9. There are 19969 bytes in each row / record in this example file.

### 2.3.3 TABLE_CHARACTER_GROUPED Label Scheme

This section depicts how the TABLE_CHARACTER_GROUPED byte-scheme, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 TABLE_CHARACTER_GROUPED class is the successor to the PDS3 TABLE object.

### 2.3.3.1 PDS3 TABLE_CHARACTER_GROUPED Label Scheme

The data product depicted in Figure 2.3-2 could be described in PDS3 by use of the TABLE and COLUMN objects. Note that the PDS label references a label fragment.

```
PDS_VERSION_ID = "PDS3"
LABEL_REVISION_NOTE = "2008-11-14, Initial"
/* File characteristics */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 19969
FILE_RECORDS = 2052
/* Pointers to object in file */
^AFM_D_HEADER_TABLE =
^AFM_F_ERROR_TABLE = ("FS004SDD_001_4E0111040000A0.TAB",5)
^AFM_F_HEIGHT_TABLE = ("FS004SDD_001_4E0111040000A0.TAB",517)
^AFM_B_ERROR_TABLE = ("FS004SDD_001_4E0111040000A0.TAB",1029)
^AFM_B_HEIGHT_TABLE = ("FS004SDD_001_4E0111040000A0.TAB",1541)
/* Identification */
DATA_SET_ID = "PHX-M-MECA-4-NIRDR-V1.0"
DESCRIPTION = "UNK"
PRODUCT ID
PRODUCT_VERSION_ID
PRODUCT_TYPE
RELEASE_ID
INSTRUMENT_HOST_NAME
INSTRUMENT_HOST_ID
INSTRUMENT_NAME = "MECA ATOMIC FORCE MICROSCOPE"
```

```
INSTRUMENT_ID
INSTRUMENT_MODE_ID
MISSION_NAME
OPS_TOKEN
OPS_TOKEN_PAYLOAD
OPS_TOKEN_COMMAND
TARGET_NAME
/* Time information */
MISSION_PHASE_NAME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
START_TIME
STOP_TIME
PLANET_DAY_NUMBER
EARTH_RECEIVED_START_TIME
EARTH_RECEIVED_STOP_\TIME
LOCAL_TRUE_SOLAR_TIME
PRODUCT_CREATION_TIME
```

/* Data object definition */
OBJECT
INTERCHANGE_FORMAT
COLUMNS
ROWS
ROW_BYTES
ROW_SUFFIX_BYTES
^STRUCTURE
DESCRIPTION
END_OBJECT
OBJECT
INTERCHANGE_FORMAT
COLUMNS
ROWS
ROW_BYTES
START_BYTE
MISSING_CONSTANT
DESCRIPTION
OBJECT
BYTES
DESCRIPTION
= "MECA_AFM"
= "SCAN"
= "PHOENIX"
$=16 \# 11040000 \#$
= 16\#00001104\#
= 16\#00000000\#
= 16\#00000000\#
$=$ MARS

```
= "PRIMARY MISSION"
= "896567771.215"
= "896567771.215"
= 2008-05-29T22:35:04.536
= 2008-05-29T22:35:04.536
= 4
= "UNK"
= "UNK"
= "12:58:36"
= 2008-11-26T00:32:06.228
```

```
= AFM_D_HEADER_TABLE
= ASCII
= 22
= 4
= 189
= 19780
= "AFM_D_HEADER.FMT"
= "This table contains the AFM scan
 parameter information. The table
 contains }189\mathrm{ bytes of table data
 followed by }19780\mathrm{ bytes of spare
 data, of which the last 2 bytes
 contain the <CR><LF> pair. "
= AFM_D_HEADER_TABLE
= AFM_F_ERROR_TABLE
= ASCII
= 1536
= 512
= 19969
= 79877
= 0.00
= "This table contains the AFM scan
 forward error derivative
 information. Each row represents a
 scan line along the fast scan
 axis"
= CONTAINER
= 39
= "The container holds the X-Y-Z
 information for each AFM scan
 error derivative data point. The
 table contains 19969 bytes of
 table data of which the last 2
```

| NAME | bytes contain the <CR><LF> pair.' = "FORWARD ERROR DERIVATIVE" |
| :---: | :---: |
| REPETITIONS | $=512$ |
| START_BYTE | = 1 |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | $=1$ |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "FORWARD ERROR DERIVATIVE X COORDINATE" |
| START_BYTE | $=1$ |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | = 2 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "FORWARD ERROR DERIVATIVE Y COORDINATE" |
| START_BYTE | = 14 |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | = 3 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "FORWARD ERROR DERIVATIVE VALUE" |
| START_BYTE | $=27$ |
| END_OBJECT | = COLUMN |
| END_OBJECT | = CONTAINER |
| END_OBJECT | = AFM_F_ERROR_TABLE |
| OBJECT | = AFM_F_HEIGHT_TABLE |
| INTERCHANGE_FORMAT | = ASCII |
| COLUMNS | = 1536 |
| ROWS | = 512 |
| ROW_BYTES | = 19969 |
| START_BYTE | = 10304005 |
| MISSING_CONSTANT | = 0.00 |
| DESCRIPTION | = "This table contains the AFM scan <br> forward Z-height derivative. <br> Each row represents a scan line along the fast scan axis" |
| OBJECT | = CONTAINER |
| BYTES | = 39 |
| DESCRIPTION | = "The container holds the X-Y-Z information for each AFM forward derivative scan data point." |
| NAME | = "FORWARD HEIGHT DERIVATIVE" |
| REPETITIONS | = 512 |
| START_BYTE | $=1$ |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | = 1 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "FORWARD HEIGHT DERIVATIVE X COORDINATE" |
| START_BYTE | = 1 |
| END_OBJECT | = COLUMN |


| OBJECT | $=$ COLUMN |
| :---: | :---: |
| COLUMN_NUMBER | $=2$ |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | $=\begin{aligned} & \text { "FORWARD HEIGHT DERIVATIVE } Y \\ & \text { COORDINATE" }\end{aligned}$ |
| START_BYTE | = 14 |
| END_OBJECT | = COLUMN |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | = 3 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "FORWARD HEIGHT DERIVATIVE VALUE" |
| START_BYTE | = 27 |
| END_OBJECT | = COLUMN |
| END_OBJECT | = CONTAINER |
| END_OBJECT | = AFM_F_HEIGHT_TABLE |
| OBJECT | = AFM_B_ERROR_TABLE |
| INTERCHANGE_FORMAT | = ASCII |
| COLUMNS | = 1536 |
| ROWS | = 512 |
| ROW_BYTES | = 19969 |
| START_BYTE | = 20528133 |
| MISSING_CONSTANT | = 0.00 |
| DESCRIPTION | = "This table contains the AFM scan backward error derivative information. Each row represents scan line along the fast scan axis." |
| OBJECT | = CONTAINER |
| BYTES | = 39 |
| DESCRIPTION | $=$ "The container holds the $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ information for each AFM scan error derivative data point. The table contains 19969 bytes of table data of which the last 2 bytes contain the <CR><LF> pair." |
| NAME | = "BACKWARD ERROR DERIVATIVE" |
| REPETITIONS | $=512$ |
| START_BYTE | $=1$ |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | = 1 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | $=$ "BACKWARD ERROR DERIVATIVE X COORDINATE" |
| START_BYTE | $=1$ |
| END_OBJECT | = COLUMN |
| OBJECT | $=$ COLUMN |
| COLUMN_NUMBER | $=2$ |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | $\begin{aligned} & =\text { "BACKWARD ERROR DERIVATIVE Y } \\ & \text { COORDINATE" } \end{aligned}$ |
| START_BYTE | = 14 |
| END_OBJECT | = COLUMN |
| OBJECT | $=$ COLUMN |


| COLUMN_NUMBER | $=3$ |
| :---: | :---: |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "BACKWARD ERROR DERIVATIVE VALUE" |
| START_BYTE | = 27 |
| END_OBJECT | = COLUMN |
| END_OBJECT | = CONTAINER |
| END_OBJECT | = AFM_B_ERROR_TABLE |
| OBJECT | = AFM_B_HEIGHT_TABLE |
| INTERCHANGE_FORMAT | = ASCII |
| COLUMNS | = 1536 |
| ROWS | = 512 |
| ROW_BYTES | = 19969 |
| START_BYTE | = 30752261 |
| MISSING_CONSTANT | $=0.00$ |
| DESCRIPTION | = "This table contains the AFM scan backward Z-height derivative information. Each row represents a scan line along the fast scan axis" |
| OBJECT | = CONTAINER |
| BYTES | $=39$ |
| DESCRIPTION | ```= "The container holds the X-Y-Z information for each AFM backward scan Z-height derivative data point."``` |
| NAME | = "BACKWARD HEIGHT DERIVATIVE" |
| REPETITIONS | = 512 |
| START_BYTE | $=1$ |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | = 1 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | $=$ "BACKWARD HEIGHT DERIVATIVE X COORDINATE" |
| START_BYTE | $=1$ |
| END_OBJECT | $=$ COLUMN |
| OBJECT | $=$ COLUMN |
| COLUMN_NUMBER | = 2 |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | $=\begin{aligned} & \text { "BACKWARD HEIGHT DERIVATIVE } \mathrm{Y} \\ & \text { COORDINATE" }\end{aligned}$ |
| START_BYTE | $=14$ |
| END_OBJECT | $=$ COLUMN |
| OBJECT | = COLUMN |
| COLUMN_NUMBER | $=3$ |
| BYTES | = 12 |
| DATA_TYPE | = ASCII_REAL |
| NAME | = "BACKWARD HEIGHT DERIVATIVE VALUE" |
| START_BYTE | $=27$ |
| END_OBJECT | $=$ COLUMN |
| END_OBJECT | = CONTAINER |
| END_OBJECT | = AFM_B_HEIGHT_TABLE |
| END |  |

            BYTES = 12
            DATA_TYPE
    = ASCII_REAL
    = "BACKWARD ERROR DERIVATIVE VALUE"
    = 27
    = COLUMN
    = CONTAINER
    = AFM_B_ERROR_TABLE
    = AFM_B_HEIGHT_TABLE
    = ASCII
    = 1536
    = 512
    = 19969
    = 30752261
    = 0.00
    "This table contains the AFM scan
        backward Z-height derivative
        information. Each row represents a
        scan line along the fast scan axis"
    = CONTAINER
= "The container holds the $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$
information for each AFM backward
scan Z-height derivative
data point."
= 512
= 1
= 1
= 12
= ASCII_REAL
"BACKWARD HEIGHT DERIVATIVE X
1
= COLUMN
= COLUMN
$=2$
= 12
ASCII_REAL
"BACKWARD HEIGHT DERIVATIVE Y
14
COLUMN
= COLUMN
= 3
= 12
= "BACKWARD HEIGHT DERIVATIVE VALUE"
= 27
= COLUMN
= CONTAINER
= AFM_B_HEIGHT_TABLE

The above label references a PDS3 label fragment, AFM_D_HEADER.FMT:

```
OBJECT = COLUMN
 COLUMN_NUMBER = 1
 NAME = cmdTimewhole
 DATA_TYPE = ASCII_INTEGER
 BYTES = 9
 START_BYTE = 1
 UNIT = SECONDS
 DESCRIPTION = "This is the time that the command was issued from
 the spacecraft computer to the MECA subsystem across the serial
 interface. Units are seconds of Spacecraft Clock (SCLK)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 2
 NAME = cmdTimeremainder
 DATA TYPE = ASCII INTEGER
 BYTES = 10
 START_BYTE = 11
 UNIT = "SECONDS/2**32"
 DESCRIPTION = "The remainder, where 2^32 is a full second."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 3
 NAME = readTimewhole
 DATA_TYPE = ASCII_INTEGER
 BYTES = 9
 START_BYTE = 22
 UNIT = SECONDS
 DESCRIPTION = "This is the time that the data was returned to the
 spacecraft computer across the serial interface from the MECA
 subsystem (not used for some telemetry types). Units are seconds
 of Spacecraft Clock (SCLK)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN NUMBER = 4
 NAME = readTimeremainder
 DATA_TYPE = ASCII_INTEGER
 BYTES = 10
 START_BYTE = 32
 UNIT = "SECONDS/2**32"
 DESCRIPTION = "The remainder, where 2^32 is a full second."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 5
 NAME = dataLength
 DATA TYPE = ASCII INTEGER
 BYTES = 6
 START_BYTE = 43
 UNIT = BYTES
 DESCRIPTION = "The length of the following record (and all records in
 this product), not including this header."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN NUMBER = 6
 NAME = cols
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START_BYTE = 50
 UNIT = POINTS
 DESCRIPTION = "The width (number of points per line) of the AFM
 image."
END_OBJECT = COLUMN
OBJECT = COLUMN
```

```
 COLUMN_NUMBER = 7
 NAME = lines
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START_BYTE = 54
 UNIT = LINES
 DESCRIPTION = "The height (number of lines) of the AFM image."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 8
 NAME = direction
 DATA_TYPE = ASCII_INTEGER
 BYTES = 1
 START_BYTE = 58
 DESCRIPTION = "The scan direction, 1 = forward, 2 = backward."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 9
 NAME = channel
 DATA_TYPE = ASCII_INTEGER
 BYTES = 1
 START BYTE = 60
 DESCRIPTION = "The RDR data channel, 1= error, 2= z-height."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 10
 NAME = channelGain
 DATA_TYPE = ASCII_INTEGER
 BYTES = 1
 START_BYTE = 62
 DESCRIPTION = "Ranges from 0 to 8, with 0=full (13.8 microns for
 height data and 20 Volts for error data), and reducing by factors
 of 2 each time, e.g. gain of 2 = 3.45 microns (height) or 5 Volts
 (error)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 11
 NAME = refOMimage
 DATA_TYPE = CHARACTER
 BYTES = 33
 START_BYTE = 64
 DESCRIPTION = "File name of the Optical Microscope image taken
 before the scan for sample context."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 12
 NAME = refOMimage2
 DATA_TYPE = CHARACTER
 BYTES = 33
 START_BYTE = 98
 DESCRIPTION = "Filename of the OM image taken after the scan"
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 13
 NAME = opsToken
 DATA_TYPE = ASCII_INTEGER
 BYTES = 8
 START BYTE = 132
 DESCRIPTION = "Ops Token for this scan."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 14
 NAME = SwtsTemperature
```

```
 DATA_TYPE = ASCII_INTEGER
 BYTES = 5
 START_BYTE = 141
 UNIT = KELVIN
 DESCRIPTION = "Temperature of the SWTS just prior to the scan."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 15
 NAME = x_scanrange
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START_BYTE = 147
 DESCRIPTION = "Scan range in the X-direction of the AFM scan plane."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 16
 NAME = y_scanrange
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START_BYTE = 154
 DESCRIPTION = "Scan range in the Y-direction of the AFM scan plane."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 17
 NAME = smoothing_factor
 DATA_TYPE = ASCII_INTEGER
 BYTES = 2
 START_BYTE = 161
 DESCRIPTION = "The scaling factor used to calibrate the data
 (converts DNs to micrometers for height data and volts for error
 data)"
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 18
 NAME = AFM_OM_ref_X
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START_BYTE = 164
 DESCRIPTION = "The approximate location of the center of the AFM
 scan field relative to the OM image. X-coordinate in pixels."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 19
 NAME = AFM_OM_ref_Y
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START BYTE = 168
 DESCRIPTION = "The approximate location of the center of the AFM
 scan field relative to the OM image. Y-coordinate in pixels."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 20
 NAME = X_slope
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START_BYTE = 172
 DESCRIPTION = "Slope correction in the x-direction of the AFM
 scan plane."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 21
 NAME = Y_slope
 DATA_TYPE = ASCII_REAL
```

```
 BYTES = 6
 START_BYTE = 179
 DESCRIPTION = "Slope correction in the y-direction of the AFM
 scan plane."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 22
 NAME = ScanSpeed
 DATA_TYPE = ASCII_REAL
 BYTES = 4
 START_BYTE = 186
 DESCRIPTION = "Scan speed of the AFM in micrometers/second"
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 1
 NAME = cmdTimewhole
 DATA TYPE = ASCII INTEGER
 BYTES = 9
 START_BYTE = 1
 UNIT = SECONDS
 DESCRIPTION = "This is the time that the command was issued from
 the spacecraft computer to the MECA subsystem across the serial
 interface. Units are seconds of Spacecraft Clock (SCLK)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 2
 NAME = cmdTimeremainder
 DATA_TYPE = ASCII_INTEGER
 BYTES = 10
 START_BYTE = 11
 UNIT = "SECONDS/2**32"
 DESCRIPTION = "The remainder, where 2^32 is a full second."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 3
 NAME = readTimewhole
 DATA_TYPE = ASCII_INTEGER
 BYTES = 9
 START BYTE = 22
 UNIT = SECONDS
 DESCRIPTION = "This is the time that the data was returned to the
 spacecraft computer across the serial interface from the MECA
 subsystem (not used for some telemetry types). Units are seconds
 of Spacecraft Clock (SCLK)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN NUMBER = 4
 NAME = readTimeremainder
 DATA_TYPE = ASCII_INTEGER
 BYTES = 10
 START_BYTE = 32
 UNIT = "SECONDS/2**32"
 DESCRIPTION = "The remainder, where 2^32 is a full second."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 5
 NAME = dataLength
 DATA_TYPE = ASCII_INTEGER
 BYTES = 6
 START_BYTE = 43
 UNIT = BYTES
 DESCRIPTION = "The length of the following record (and all records in
 this product), not including this header."
```

```
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 6
 NAME = cols
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START_BYTE = 50
 UNIT = POINTS
 DESCRIPTION = "The width (number of points per line) of the AFM
 image."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 7
 NAME = lines
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START BYTE = 54
 UNIT = LINES
 DESCRIPTION = "The height (number of lines) of the AFM image."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 8
 NAME = direction
 DATA_TYPE = ASCII_INTEGER
 BYTES = 1
 START_BYTE = 58
 DESCRIPTION = "The scan direction, 1 = forward, 2 = backward."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 9
 NAME = channel
 DATA_TYPE = ASCII_INTEGER
 BYTES = 1
 START_BYTE = 60
 DESCRIPTION = "The RDR data channel, \(1=\) error, \(2=\) z-height."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 10
 NAME = channelGain
 DATA_TYPE = ASCII_INTEGER
 BYTES = 1
 START_BYTE = 62
 DESCRIPTION = "Ranges from 0 to 8, with 0=full (13.8 microns for
 height data and 20 Volts for error data), and reducing by factors
 of 2 each time, e.g. gain of \(2=3.45\) microns (height) or 5 Volts
 (error)."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 11
 NAME = refOMimage
 DATA_TYPE = CHARACTER
 BYTES = 33
 START_BYTE = 64
 DESCRIPTION = "File name of the Optical Microscope image taken
 before the scan for sample context."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN NUMBER = 12
 NAME = refOMimage2
 DATA_TYPE = CHARACTER
 BYTES = 33
 START_BYTE = 98
 DESCRIPTION = "Filename of the OM image taken after the scan"
```

```
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 13
 NAME = opsToken
 DATA_TYPE = ASCII_INTEGER
 BYTES = 8
 START_BYTE = 132
 DESCRIPTION = "Ops Token for this scan."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 14
 NAME = SwtsTemperature
 DATA_TYPE = ASCII_INTEGER
 BYTES = 5
 START_BYTE = 141
 UNIT = KELVIN
 DESCRIPTION = "Temperature of the SWTS just prior to the scan."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 15
 NAME = x_scanrange
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START_BYTE = 147
 DESCRIPTION = "Scan range in the X-direction of the AFM scan plane."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 16
 NAME = y_scanrange
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START_BYTE = 154
 DESCRIPTION = "Scan range in the Y-direction of the AFM scan plane."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 17
 NAME = smoothing_factor
 DATA_TYPE = ASCII_INTEGER
 BYTES = 2
 START_BYTE = 161
 DESCRIPTION = "The scaling factor used to calibrate the data
 (converts DNs to micrometers for height data and volts for error
 data)"
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 18
 NAME = AFM_OM_ref_X
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START_BYTE = 164
 DESCRIPTION = "The approximate location of the center of the AFM
 scan field relative to the OM image. X-coordinate in pixels."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 19
 NAME = AFM_OM_ref_Y
 DATA_TYPE = ASCII_INTEGER
 BYTES = 3
 START_BYTE = 168
 DESCRIPTION = "The approximate location of the center of the AFM
 scan field relative to the OM image. Y-coordinate in pixels."
END_OBJECT = COLUMN
OBJECT = COLUMN
```

```
 COLUMN_NUMBER = 20
 NAME = X_slope
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START_BYTE = 172
 DESCRIPTION = "Slope correction in the x-direction of the AFM
 scan plane."
END_OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 21
 NAME = Y_slope
 DATA_TYPE = ASCII_REAL
 BYTES = 6
 START BYTE = 179
 DESCRIPTION = "Slope correction in the y-direction of the AFM
 scan plane."
END OBJECT = COLUMN
OBJECT = COLUMN
 COLUMN_NUMBER = 22
 NAME = ScanSpeed
 DATA_TYPE = ASCII_REAL
 BYTES = 4
 START_BYTE = 186
 DESCRIPTION = "Scan speed of the AFM in micrometers/second"
END_OBJECT = COLUMN
```


### 2.3.3.2 PDS4 TABLE_CHARACTER_GROUPED Label Scheme

The same data product can also be described in PDS4 by use of the TABLE_CHARACTER_GROUPED class, the TABLE_CHARACTER_GROUPED_SEQUENCE class, and the TABLE_CHARACTER_GROUPED_FIELD class:

```
#PDS4#
/* ******* LABEL TEMPLATE - PRODUCT_TABLE_CHARACTER_GROUPED ******* */
OBJECT = PRODUCT_TABLE_CHARACTER_GROUPED;
 OBJECT = IDENTIFICATION_SECTION;
 DD_VERSION_ID = "DD_VERSION_ID";
 IDENTIFIER = "PDS4_MECA_PRODUCT_TABLE_CHARACTER_ID:V1.0";
 LABEL_REVISION_NOTE = "20081223:1.0 - initial version";
 PDS_VERSION_ID = "PDS4.0";
 PRODUCT_CREATION_TIME = 2008-12-23T00:36:08.000;
 TITLE = "Phoenix Project MECA ATOMIC FORCE MICROSCOPE
 Experiment";
 URN = "HTTP://PDS-GEOSCIENCES.WUSTL.EDU/GEO/PHX-M-
MECA-4-NIRDR-V1.0:PHX-M-MECA-4-NIRDR-V1.0:1.0";
 VERSION = "1.0";
END_OBJECT = IDENTIFICATION_SECTION;
OBJECT = DESCRIPTION_SECTION;
 DESCRIPTION = "Phoenix Project Microscopy, Electrochemistry,
 and Conductivity Analyzer (MECA) Non-Imaging
 EDR and RDR (NASA Levels 0 and 1) Archives.";
END_OBJECT = DESCRIPTION_SECTION;
```

```
 OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
 COMMENT = "Observation Intent";
 SPACECRAFT_CLOCK_START_COUNT = "896567771.215";
 SPACECRAFT_CLOCK_STOP_COUNT = "896567771.215";
 START_TIME = 2008-05-29T22:35:04.536;
 STOP_TIME = 2008-05-29T22:35:04.536;
 END_OBJECT = CIRCUMSTANCES_OF_OBSERVATION_SECTION;
 OBJECT = DATASET_SECTION;
 DATA_SET_ID = "PHX-M-MECA-4-NIRDR-V1.0";
 END_OBJECT = DATASET_SECTION;
 OBJECT = MISSION_SECTION;
 MISSION_NAME = "PHOENIX";
 END_OBJECT = MISSION_SECTION;
 OBJECT = TARGET_SECTION;
 TARGET_NAME = MARS;
 END_OBJECT = TARGET_SECTION;
 OBJECT = INSTRUMENT_SECTION;
 INSTRUMENT_ID_NEW = "MECA_AFM";
 END_OBJECT = INSTRUMENT_SECTION;
 OBJECT = INSTRUMENT_HOST_SECTION;
 INSTRUMENT_HOST_ID = PHX;
 END_OBJECT = INSTRUMENT_HOST_SECTION;
 OBJECT = NODE_SECTION;
 NODE_NAME = GEOSCIENCES;
 END_OBJECT = NODE_SECTION;
 OBJECT = OTHER_OBJECTS_SECTION;
 DESCRIPTION = "N/A";
 END_OBJECT = OTHER_OBJECTS_SECTION;
/*** Data Objects in File ***/
/*** (1) AFM_D_HEADER_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",1) ***/
/*** (2) AFM_F_ERROR_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",79877) ***/
/*** (3) AFM_F_HEIGHT_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",1030400) ***/
/*** (4) AFM_B_ERROR_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",20528133) ***/
/*** (5) AFM_B_HEIGHT_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",30752261) ***/
 OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
/*** (1) AFM_D_HEADER_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",1) ***/
 OBJECT = TABLE_CHARACTER_GROUPED;
 DATA_LOCATION = ("PDS4_MECA_TABLE_CHAR_FILE_ID",1);
 COMMENT = "This table contains the AFM scan
 parameter information. The table contains
 189 bytes of table data followed by 19780
 bytes of spare data, of which the last }
 bytes contain the <CR><LF> pair. ";
 LOCAL_IDENTIFIER
 = "PDS4_MECA_AFM_D_HEADER_TABLE_ID";
 NUMBER_OF_FIELDS
 = 22;
 NUMBER OF ROWS
 ROW_BYTES = 19969;
 OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 REPETITIONS = 1;
```

```
##include "PDS4_AFM_D_HEADER_TABLE.FMT"
 END_OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED;
 END_OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
 OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
/*** (2) AFM_F_ERROR_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",79877) ***/
 OBJECT = TABLE_CHARACTER_GROUPED;
 DATA_LOCATION = ("PDS4_MECA_TABLE_CHAR_FILE_ID",79877);
 COMMENT = "This table contains the AFM scan forward
 Error derivative information. Each row
 represents a scan line along the fast scan
 axis";
 LOCAL_IDENTIFIER
 = "PDS4_MECA_AFM_F_ERROR_TABLE_TABLE_ID";
 = 1536;
NUMBER_OF_FIELDS
 = 512;
NUMBER_OF_ROWS
ROW_BYTES = 19969;
OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
REPETITIONS = 512;
DESCRIPTION = "The container holds the X-Y-Z
 information for each AFM scan error
 derivative data point. The table
 contains }19969\mathrm{ bytes of table data of
 which the last 2 bytes contain the
 <CR><LF> pair. ";
OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 1;
 FIELD_NAME = "FORWARD ERROR DERIVATIVE X
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 1;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 2;
 FIELD_NAME = "FORWARD ERROR DERIVATIVE Y
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 14;
 OBJECT = SPECIAL_CONSTANTS;
```

```
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 3;
 FIELD_NAME = "FORWARD ERROR DERIVATIVE VALUE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 27;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 END_OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED;
 END_OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
 OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
/*** (3) AFM_F_HEIGHT_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",1030400) ***/
 OBJECT = TABLE_CHARACTER_GROUPED;
 DATA_LOCATION = ("PDS4_MECA_TABLE_CHAR_FILE_ID",1030400);
 COMMENT = "This table contains the AFM scan forward
 Z-height derivative. Each row represents
 a scan line along the fast scan axis";
 LOCAL_IDENTIFIER
 NUMBER_OF_FIELDS
 = "PDS4_MECA_AFM_F_ERROR_TABLE_TABLE_ID";
 = 1536;
 NUMBER_OF_ROWS
 = 512;
 ROW_BYTES = 19969;
 OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 REPETITIONS = 512;
 DESCRIPTION = "The container holds the X-Y-Z
 information for each AFM forward
 derivative scan data point."
 OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 1;
 FIELD_NAME = "FORWARD HEIGHT DERIVATIVE X
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 1;
 OBJECT = SPECIAL_CONSTANTS;
```

```
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 2;
 FIELD_NAME = "FORWARD HEIGHT DERIVATIVE Y
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 14;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 3;
 FIELD_NAME = "FORWARD HEIGHT DERIVATIVE VALUE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 27;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 END_OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED;
 END_OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
 OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
/*** (4) AFM_B_ERROR_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",20528133) ***/
 OBJECT = TABLE_CHARACTER_GROUPED;
 DATA_LOCATION = ("PDS4_MECA_TABLE_CHAR_FILE_ID",20528133);
 COMMENT = "This table contains the AFM scan backward
 error derivative information. Each row
 represents a scan line along the fast scan
 axis.";
 LOCAL_IDENTIFIER
 = "PDS4_MECA_AFM_F_ERROR_TABLE_TABLE_ID";
 NUMBER_OF_FIELDS = 1536;
 NUMBER_OF_ROWS = 512;
 ROW_BYTES = 19969;
 OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 REPETITIONS = 512;
```

```
 DESCRIPTION = "The container holds the X-Y-Z information
 for each AFM scan error derivative data
 point. The table contains 19969 bytes of
 table data of which the last 2 bytes
 contain the <CR><LF> pair.";
 OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 1;
 FIELD_NAME = "FORWARD ERROR DERIVATIVE X
 COORDINATE";
 FIELD_DATA_TYPE
 = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 1;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 2;
 FIELD_NAME = "FORWARD ERROR DERIVATIVE Y
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 14;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 3;
 FIELD_NAME = "BACKWARD ERROR DERIVATIVE VALUE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 27;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 END_OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
END_OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED;
END_OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
```

```
OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
/*** (5) AFM_B_HEIGHT_TABLE = ("PDS4_MECA_TABLE_CHAR.TAB",30752261) ***/
OBJECT = TABLE_CHARACTER_GROUPED;
 DATA_LOCATION = ("PDS4_MECA_TABLE_CHAR_FILE_ID",30752261);
 COMMENT = "This table contains the AFM scan backward
 Z-height derivative information. Each row
 represents a scan line along the fast scan
 axis";
 LOCAL_IDENTIFIER
 NUMBER_OF_FIELDS
 = "PDS4_MECA_AFM_F_ERROR_TABLE_TABLE_ID";
 = 1536;
 NUMBER_OF_ROWS = 512;
 ROW_BYTES = 19969;
 OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 REPETITIONS = 512;
 DESCRIPTION = "The container holds the X-Y-Z
 information for each AFM backward
 scan Z-height derivative data point.";
 OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 1;
 FIELD_NAME = "BACKWARD HEIGHT DERIVATIVE X
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 1;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 2;
 FIELD_NAME = "BACKWARD HEIGHT DERIVATIVE Y
 COORDINATE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 14;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 3;
 FIELD_NAME = "BACKWARD HEIGHT DERIVATIVE VALUE";
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "N/A";
 FIELD_FORMAT = "N/A";
```

```
 FIELD_LENGTH = 12;
 FIELD_LOCATION = 27;
 OBJECT = SPECIAL_CONSTANTS;
 MISSING_CONSTANT = 0.00;
 END_OBJECT = SPECIAL_CONSTANTS;
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 END_OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED_SEQUENCE;
 END_OBJECT = TABLE_CHARACTER_GROUPED;
END_OBJECT = TAGGED_TABLE_CHARACTER_GROUPED_SET;
 OBJECT = PROPERTY_MAP; /* OPTIONAL */
 LOCAL_IDENTIFIER = "N/A"; /* OPTIONAL */
 PROPERTY_MAP_ENTRY = (
 ("MECA_AFM_SDD", PRODUCT_ID,
"FS004SDD_001_4E0111040000A0"),
 ("MECA_AFM_SDD", PRODUCT_VERSION_ID, "V1.0"),
 ("MECA_AFM_SDD", PRODUCT_TYPE,
 ("MECA_AFM_SDD", RELEASE_ID,
 ("MECA_AFM_SDD", INSTRUMENT_HOST_NAME,
 ("MECA_AFM_SDD", INSTRUMENT_HOST_ID,
 ("MECA_AFM_SDD", INSTRUMENT_NAME,
MICROSCOPE"),
 ("MECA_AFM_SDD", INSTRUMENT_ID, "MECA_AFM"),
 ("MECA_AFM_SDD", INSTRUMENT_MODE_ID, "SCAN"),
 ("MECA_AFM_SDD", MISSION_NAME, "PHOENIX"),
 ("MECA_AFM_SDD", OPS_TOKEN, 16#11040000#),
 ("MECA_AFM_SDD", OPS_TOKEN_ACTIVITY, 16#00001104#),
 ("MECA_AFM_SDD", OPS_TOKEN_PAYLOAD, 16#00000000#),
 ("MECA_AFM_SDD", OPS_TOKEN_COMMAND, 16#00000000#),
 ("MECA_AFM_SDD", MISSION_PHASE_NAME, "PRIMARY MISSION"),
 ("MECA_AFM_SDD", PLANET_DAY_NUMBER, 4),
 ("MECA_AFM_SDD", EARTH_RECEIVED_START_TIME, "UNK"),
 ("MECA_AFM_SDD", EARTH_RECEIVED_STOP_TIME, "UNK"),
 ("MECA_AFM_SDD", LOCAL_TRUE_SOLAR_TIME, "12:58:36"),
 ("MECA_AFM_SDD", PRODUCT_CREATION_TIME, 2008-11-26T00:32:06.228)
);
 END_OBJECT = PROPERTY_MAP;
 OBJECT = FILE_SECTION;
 OBJECT = FILE_CHARACTER_FIXED;
 LOCAL_IDENTIFIER = "PDS4_MECA_TABLE_CHAR_FILE_ID";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "PDS4_MECA_TABLE_CHAR.TAB";
 FILE_TYPE = CHARACTER;
 MAX_RECORD_BYTES = 19969;
 RECORD_TYPE = FIXED;
 END_OBJECT = FILE_CHARACTER_FIXED;
END_OBJECT = FILE_SECTION;
END_OBJECT = PRODUCT_TABLE_CHARACTER_GROUPED;
```

The above label references a PDS4 label fragment, PDS4_AFM_D_HEADER.FMT:

```
OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 1;
 FIELD_NAME = cmdTimewhole;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "This is the time that the command was issued
 from the spacecraft computer to the MECA
 subsystem across the serial interface.
 Units are seconds of Spacecraft Clock
 (SCLK).";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 9;
 FIELD_LOCATION = 1;
 FIELD_UNIT = SECONDS;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 2;
 FIELD_NAME = cmdTimeremainder;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The remainder, where \(2 \wedge 32\) is a full
 second.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 10;
 FIELD_LOCATION = 11;
 FIELD_UNIT = "SECONDS/2**32";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 3;
 FIELD_NAME = readTimewhole;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "This is the time that the data was returned
 to the spacecraft computer across the
 serial interface from the MECA subsystem
 (not used for some telemetry types). Units
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 9;
 FIELD_LOCATION \(=22\);
 FIELD_UNIT = SECONDS;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 4;
 FIELD_NAME = readTimeremainder;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The remainder, where \(2 \wedge 32\) is a full second.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 10;
 FIELD_LOCATION = 32;
 FIELD_UNIT = "SECONDS/2**32";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 5;
```

```
 FIELD_NAME = dataLength;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The length of the following record
 (and all records in this product),
 not including this header.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 6;
 FIELD_LOCATION = 43;
 FIELD_UNIT = BYTES;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 6;
 FIELD_NAME = cols;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The width (number of points per line)
 of the AFM image.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 3;
 FIELD_LOCATION = 50;
 FIELD_UNIT = POINTS;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 7;
 FIELD_NAME = lines;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The height (number of lines) of the
 AFM image.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 3;
 FIELD_LOCATION = 54;
 FIELD_UNIT = LINES;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 8;
 FIELD_NAME = direction;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The scan direction, 1 = forward,
 2 = backward.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 1;
 FIELD_LOCATION = 58;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 9;
 FIELD_NAME = channel;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The RDR data channel, 1= error,
 2= z-height.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 1;
 FIELD_LOCATION = 60;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 10;
 FIELD_NAME = channelGain;
 FIELD_DATA_TYPE = ASCII_INTEGER;
```

```
 FIELD_DESCRIPTION = "Ranges from 0 to 8, with 0=full
 (13.8 microns for height data and
 20 Volts for error data), and reducing
 by factors of 2 each time, e.g. gain
 of 2 = 3.45 microns (height) or 5 Volts
 (error).";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 1;
 FIELD_LOCATION = 62;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 11;
 FIELD_NAME = refOMimage;
 FIELD_DATA_TYPE = CHARACTER;
 FIELD_DESCRIPTION = "File name of the Optical Microscope image
 taken before the scan for sample context.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 33;
 FIELD_LOCATION = 64;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 12;
 FIELD_NAME = refOMimage2;
 FIELD_DATA_TYPE = CHARACTER;
 FIELD_DESCRIPTION = "Filename of the OM image taken after the
 scan";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 33;
 FIELD_LOCATION = 98;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 13;
 FIELD_NAME = opsToken;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "Ops Token for this scan.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 8;
 FIELD_LOCATION = 132;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 14;
 FIELD_NAME = SwtsTemperature;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "Temperature of the SWTS just prior to
 the scan.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 5;
 FIELD_LOCATION = 141;
 FIELD_UNIT = KELVIN;
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 15;
 FIELD_NAME = x_scanrange;
 FIELD_DATA_TYPE = ASCII_REAL;
```

```
 FIELD_DESCRIPTION = "Scan range in the X-direction of the AFM
 scan plane.";
 FIELD_FORMAT
 = "N/A";
 FIELD_LENGTH = 6;
 FIELD_LOCATION = 147;
 FIELD_UNIT
 = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 16;
 FIELD_NAME = y_scanrange;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "Scan range in the Y-direction of the AFM
 scan plane.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 6;
 FIELD_LOCATION = 154;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 17;
 FIELD_NAME = smoothing_factor;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The scaling factor used to calibrate the
 data (converts DNs to micrometers for height
 data and volts for error data)";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 2;
 FIELD_LOCATION = 161;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 18;
 FIELD_NAME = AFM_OM_ref_X;
 FIELD_DATA_TYPE = ASCII_INTEGER;
 FIELD_DESCRIPTION = "The approximate location of the center of
 the AFM scan field relative to the OM image.
 X-coordinate in pixels.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 3;
 FIELD_LOCATION = 164;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 19;
 FIELD_NAME = AFM_OM_ref_Y;
 FIELD_DATA_TYPE = ASCIII_INTEGER;
 FIELD_DESCRIPTION = "The approximate location of the center of
 the AFM scan field relative to the OM image.
 Y-coordinate in pixels.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 3;
 FIELD_LOCATION = 168;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 20;
 FIELD_NAME = X_slope;
 FIELD_DATA_TYPE = ASCII_REAL;
```

```
 FIELD_DESCRIPTION = "Slope correction in the x-direction of the
 AFM scan plane.";
 FIELD_FORMAT
 = "N/A";
 FIELD_LENGTH = 6;
 FIELD_LOCATION = 172;
 FIELD_UNIT = "N/A";
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 21;
 FIELD_NAME = Y_slope;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "Slope correction in the y-direction of the
 AFM scan plane.";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 6;
 FIELD_LOCATION = 179;
 FIELD_UNIT = "N/A";
 END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 22;
 FIELD_NAME = ScanSpeed;
 FIELD_DATA_TYPE = ASCII_REAL;
 FIELD_DESCRIPTION = "Scan speed of the AFM in micrometers/second";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 4;
 FIELD_LOCATION = 186;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
/** Add Field to equivalence ROW_SUFFIX_BYTES = 19780 */
OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
 FIELD_NUMBER = 23;
 FIELD_NAME = RowSuffixBytes;
 FIELD_DATA_TYPE = CHARACTER;
 FIELD_DESCRIPTION = "Padding out to row_bytes -
 no data can be found here";
 FIELD_FORMAT = "N/A";
 FIELD_LENGTH = 19780;
 FIELD_LOCATION = 191;
 FIELD_UNIT = "N/A";
END_OBJECT = TABLE_CHARACTER_GROUPED_FIELD;
END_OBJECT = TABLE_CHARACTER_FIELD_SEQUENCE;
```


### 2.3.4 PDS4 TABLE_CHARACTER_GROUPED and PDS3 TABLE PARALLELISMS

TBD

### 3.0 UNENCODED STREAM BASE

### 3.1 SOFTWARE_SET

This section describes the SOFTWARE_SET class where one or more files, as identified as a set, comprise a logically complete "copy" of the referenced Software.

This section identifies a mapping of the PDS3 SOFTWARE object to the PDS4 SOFTWARE_SET class and demonstrates how the software "pieces / fragments" can be described by both a PDS3 label and a PDS4 label.

### 3.1.1 SOFTWARE_SET Class Description and Schema

Figure 3.1-1 depicts a representation of the PDS4 SOFTWARE_SET class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.

```
OBJECT = SOFTWARE_SET
Req/Opt Cardinality
OBJECT = TAGGED_SOFTWARE_FORMAT Required 1..*
 DESCRIPIION
Optional 1
OBJECT = TAGGED_FILE
OBJECT = SOFTWARE_BINARY
OBJECT = SOFTWARE_SCRIPT
OBJECT = SOFTWARE SOURCE
 OS_VERSION
 COMPILE_NOTES
 FILES Required
 SOFTWARE_DIALECT
 SOFTWARE LANGUAGE
 SUPPORTED_OS
 SUPPORTED_ARCHITECTURE
 SW FORMAT TYPE
 SYSTEM_REQUIREMENTS
 PROGRAM_NOTES_IDENTIFIER
 END_OBJECT = SOFTWARE_SOURCE
END_OBJECT = TAGGED_SOFTWARE_FORMAT
```

| OBJECT = SOFTWARE_SET_DESC | Required | 1 |
| :--- | :--- | :--- |
| VERSION | Required | 1 |
| AUTHOR_LIST | Required | 1 |
| DESCRIPTION | Required | 1 |
| NAME | Required | 1 |
| SOFTWARE_ID | Required | 1 |
| SOFTWARE_TYPE | Required | 1 |
| PROGRAMMERS_MANUAL_IDENTIFIER |  |  |
| USERS_MANUAL_IDENTIFIER | Required | 1 |
| END_OBJECT =SOFTWARE_SET_DESC | Required | 1 |

OBJECT = IDENTIFICATION_SECTION
OBJECT = IDENTIFICATION_SECTION
URN
URN
IDENTIFIER
IDENTIFIER
TITLE
TITLE
VERSION
VERSION
DD_VERSION_ID
DD_VERSION_ID
PDS__VERSION_ID
PDS__VERSION_ID
LABEL_REVISION_NOTE
LABEL_REVISION_NOTE
PRODUCT_CREATION_TIME
PRODUCT_CREATION_TIME
END_OBJECT }\mp@subsup{}{}{-}= IDENII\overline{FICATION_SECTION
END_OBJECT }\mp@subsup{}{}{-}= IDENII\overline{FICATION_SECTION
END_OBJECT = SOFTWARE_SET
END_OBJECT = SOFTWARE_SET

Figure 3.1-1. Diagram of the SOFTWARE_SET Schema
From Figure 3.1-1, the overall structure of the SOFTWARE_SET data object description can be easily discerned and understood.

1. The parent class, the SOFTWARE_SET class, is comprised of three subclasses:

- TAGGED_SOFTWARE_FORMAT class
- SOFTWARE_SET_DESC class
- IDENTIFICATION_SECTION class

2. The TAGGED_SOFTWARE_FORMAT class must exist once but may exist many times within the context of the SOFTWARE_SET class.
3. The TAGGED_SOFTWARE _FORMAT class is comprised of four subclasses, the TAGGED_FILE class, the SOFTWARE_BINARY class, the SOFTWARE_SCRIPT class, and the SOFTWARE_SOURCE class.
4. The TAGGED_FILE class must exist once but may exist many times within the context of the TAGGED_SOFTWARE_FORMAT class.
5. The TAGGED_FILE class is comprised of five required non-repeating data elements.
6. The SOFTWARE_BINARY class may optionally once but may exist many times within the context of the TAGGED_SOFTWARE_FORMAT class.
7. The SOFTWARE_BINARY class is comprised of seven required nonrepeating data elements. These data elements must exist once and only once within the context of the SOFTWARE_BINARY class.
8. The SOFTWARE_SCRIPT class may optionally once but may exist many times within the context of the TAGGED_SOFTWARE_FORMAT class.
9. The SOFTWARE SCRIPT class is comprised of four required non-repeating data elements. These data elements must exist once and only once within the context of the SOFTWARE_BINARY class.
10. The SOFTWARE_SOURCE class may optionally once but may exist many times within the context of the TAGGED_SOFTWARE_FORMAT class.
11. The SOFTWARE_SOURCE class is comprised of nine required nonrepeating data elements. These data elements must exist once and only once within the context of the SOFTWARE_BINARY class.
12. Within the context of the TAGGED_SOFTWARE_FORMAT class, the SOFTWARE_BINARY, the SOFTWARE_SCRIPT, or the SOFTWARE SOURCE class must exist at least once.
13. The SOFTWARE_SET_DESC class must exist once and only once within the context of the SOFTWARE_SET class.
14. The SOFTWARE _SET_DESC class is comprised of eight required nonrepeating data elements.
15. The IDENTIFICATION_SECTION class must exist once and only once within the context of the SOFTWARE_SET class.
16. The IDENTIFICATION_SECTION class is comprised of eight required nonrepeating data elements.
17. Within the context of the SOFTWARE_BINARY and the SOFTWARE_SOURCE classes, there exists an IDENTIFIER data element that references a DOCUMENT_SET class. The identifier references the Programmers Notes document. This document exist somewhere within the context of PDS.
18. Within the context of the SOFTWARE_SET_DESC class, there exists two IDENTIFIER data elements that each reference a DOCUMENT_SET class. One identifier references the Programmers Manual while the other class references the Users Guide. Both documents exist somewhere within the context of PDS.

### 3.1.2 SOFTWARE_SET Structure and Constituent Parts

Figure 3.1-2 depicts a representation of the overall structure and the individual constituent parts of a PDS4 SOFTWARE_SET.

```
SOFTWARE/SORTREF.LBL
SOFTWARE/SORTREF.PL
SOFTWARE/SORTREF.L
```

Figure 3.1-2. Diagram of the SOFTWARE_SET Structure

With respect to the above structure:

1. The set of software files is described by the LBL file which is resident in the SOFTWARE directory.
2. The software is comprised of a single Perl script.
3. The UNIX-man file is considered a document and is described using the DOCUMENT_SET class.

### 3.1.3 SOFTWARE_SET Label Scheme

This section depicts how the structure and constituent parts of a SOFTWARE_SET, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 SOFTWARE_SET class is the successor to the PDS3 SOFTWARE object.

### 3.1.3.1 PDS3 SOFTWARE_SET Structure and Constituent Parts

Under PDS3, the data product depicted in Figure 3.1-2 is described by a very terse set of information which principally focused on a high level description of the software function.

```
PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM
OBJECT = SOFTWARE
 SOFTWARE_ID = SBN_REFSORT
 SOFTWARE_VERSION_ID = "V1.0"
 SOFTWARE_PURPOSE = VERIFICATION
 OBJECT = SOFTWARE_INFORMATION
 SOFTWARE_NAME = REFSORT
 DATA_FORMAT = PDS
 SOFTWARE_LICENSE_TYPE = "PUBLIC DOMAIN"
 TECHNICAL_SUPPORT_TYPE = FULL
 REQUIRED_STORAGE_BYTES = 5000
 PDS_USER_ID = "N/A"
 NODE_ID = SBN
 SOFTWARE_DESC = "This Perl utility sorts a file containing
 a series of (properly-formatted) REFERENCE
 objects according to the value of the
 REFERENCE_KEY_ID elements. Formatting is
 not otherwise changed. A text version
 of a Unix 'man' page is included in the
 distribution, in addition to the man page
 source file."
 END_OBJECT = SOFTWARE_INFORMATION
```

```
 OBJECT = SOFTWARE_ONLINE
 ON_LINE_IDENTIFICATION =
"http://pdssbn.astro.umd.edu/software/refsort.tar"
 ON_LINE_NAME = "SBN REFERENCE Object Source Routine"
 NODE_ID = SBN
 PROTOCOL_TYPE = URL
 PLATFORM = MULTIPLE
 END_OBJECT = SOFTWARE_ONLINE
END_OBJECT = SOFTWARE
END
```


### 3.1.3.2 PDS4 SOFTWARE_SET Structure and Constituent Parts

The same data product can also be described in PDS4 in a single label by use of the SOFTWARE_SET class. Under PDS4, the SOFTWARE_SET data product depicted in Figure 3.1-2 is described by a more descriptive set of metadata that is descriptive of the function of the software; as well as, the document that accompany the software.

```
#PDS4#
/* ******* Label Template - Software_Set ******* */
OBJECT = SOFTWARE_SET;
OBJECT = IDENTIFICATION_SECTION;
 URN = "N/A";
 IDENTIFIER = "PDS4_SBN_REFSOFT_ODL:V1.0";
 TITLE = "SBN REFSOFT V1.0 Perl Source Routine";
 VERSION = "1.0";
 DD_VERSION_ID = "DD_VERSION_ID";
 PDS_VERSION_ID = "PDS4.0";
 LABEL_REVISION_NOTE = "20081223:1.0 - initial version";
 PRODUCT_CREATION_TIME = 2008-12-23T00:36:08.000;
END_OBJECT = IDENTIFICATION_SECTION;
OBJECT = TAGGED_SOFTWARE_FORMAT;
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "SORTREF.PL";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_SPECIFICATION_NAME = "SOFTWARE/SORTREF.PL";
 FILE_TYPE = CHARACTER;
 END_OBJECT = TAGGED_FILE;
 OBJECT = SOFTWARE_SCRIPT;
 FILES = 1;
 INSTALL_NOTES = "Installation requires no level of
 expertise whatsoever.";
 SUPPORTED_ARCHITECTURE = MOST;
 SYSTEM_REQUIREMENTS = PERL;
 END_OBJECT = SOFTWARE_SCRIPT;
END_OBJECT = TAGGED_SOFTWARE_FORMAT;
```

```
 OBJECT = SOFTWARE_SET_DESC;
 VERSION = "V1.0";
 AUTHOR_LIST = "A.RAUGH";
 DESCRIPTION = "Reads a file containing a simple list
 of PDS REFERENCE object definitions,
 sorts the definitions based on the
 REFERENCE_KEY_ID values, and output the
 result.
 Any lines in the file preceding the first
 REFERENCE object are preserved; comments
 between references and any lines following
 the END statement are deleted.
 A single blank line will be inserted between
 REFERENCE objects. If the input lines are
 padded to 80 bytes and have CR/LF carriage-
 control, so will the inserted blank lines;
 otherwise these will just consist of a
 linefeed. The output file will only contain
 an END statement if one was found in the
 original file.
 ";
 NAME
 SOFTWARE_ID
 SOFTWARE_TYPE
= "SBN -- SORT References based on REF_KEY_ID";
= "REFSOFT V1.0;
= "UTILITY / REFERENCES";
 /* Include reference to the Unix Manual for both Docs */
 PROGRAMMERS_MANUAL_IDENTIFIER = "PDS4_SBN_SORTREF_MANUAL";
 USERS_MANUAL_IDENTIFIER = "PDS4_SBN_SORTREF_MANUAL";
END_OBJECT = SOFTWARE_SET_DESC;
END_OBJECT = SOFTWARE_SET;
```

3.1.4

PDS4 SOFTWARE_SET and PDS3 SOFTWARE PARALLELISMS
TBD

### 4.0 ENCODED STREAM BASE

### 4.1 DOCUMENT_SET

This section describes the DOCUMENT_SET class where one or more files, as identified as a set, comprise a logically complete "copy" of the referenced document file(s).

This section identifies a mapping of the PDS3 DOCUMENT object to the PDS4 DOCUMENT_SET class and demonstrates how the document "pieces / fragments" can be described by both a PDS3 label and a PDS4 label.

### 4.1.1 DOCUMENT_SET Class Description and Schema

Figure 4.1-1 depicts a representation of the PDS4 DOCUMENT_SET class and the associated parent and child classes. The figure additionally lists the required or optional status, and the cardinality of repeating structures.


Figure 4.1-1. Diagram of the DOCUMENT_SET Schema
From Figure 4.1-1, the overall structure of the DOCUMENT_SET data object description can be easily discerned and understood.

1. The parent class, the DOCUMENT_SET class, is comprised of three subclasses:

- TAGGED_DOCUMENT_FORMAT class
- DOCUMENT_SET_DESC class
- IDENTIFICATION_SECTION class.

2. The TAGGED_DOCUMENT_FORMAT class must exist once but may exist many times within the context of the DOCUMENT_SET class.
3. The TAGGED_DOCUMENT_FORMAT class is comprised of a single optional non-repeating data element and two sub-classes, the TAGGED_FILE class and the DOCUMENT_FORMAT class.
4. The TAGGED_FILE class must exist once but may exist many times within the context of the TAGGED_DOCUMENT_FORMAT class.
5. The TAGGED_FILE class is comprised of five required non-repeating data elements.
6. The DOCUMENT_FORMAT class must exist once and only once within the context of the TAGGED_DOCUMENT_FORMAT class.
7. The DOCUMENT_FORMAT class is comprised of a single optional nonrepeating data element and a single required non-repeating data element.
8. The DOCUMENT_SET_DESC class must exist once and only once within the context of the DOCUMENT_SET class.
9. The DOCUMENT_SET_DESC class is comprised of four required nonrepeating data elements and three optional non-repeating data elements.
10. The IDENTIFICATION_SECTION class must exist once and only once within the context of the DOCUMENT_SET class.
11. The IDENTIFICATION_SECTION class is comprised of eight required nonrepeating data elements.

### 4.1.2 DOCUMENT_SET Structure and Constituent Parts

Figure 4.1-2 depicts a representation of the overall structure and the individual constituent parts of a PDS4 DOCUMENT_SET.


Figure 4.1-2. Diagram of the DOCUMENT_SET Structure

With respect to the above structure:
4. The set of documents is described by the LBL file which is resident in the DOCUMENT directory.
5. The document is represented as both a PDF version and an HTML version.
6. The PDF version is comprised of a single file which is resident in the DOCUMENT directory.
7. The HTML version is a multi-part document which is comprised of some 20+ files where the parent HTM file, resident in the DOCUMENT directory, references the 20+ associated images which are resident in the DOCUMENT/IMAGE_FILES directory.

### 4.1.3 DOCUMENT_SET Label Scheme

This section depicts how the structure and constituent parts of a DOCUMENT_SET, as illustrated above, can be described by both a PDS3 label and a PDS4 label.

The PDS4 DOCUMENT_SET class is the successor to the PDS3 DOCUMENT object.

### 4.1.3.1 PDS3 DOCUMENT_SET Label Scheme

Under PDS3, the data product depicted in Figure 4.1-2 must be described by two separate label files, as the files that comprise the document reside in separate directories.

The primary label describes the files that reside in the DOCUMENT directory. These files describe both the PDF version and the HTML version of the document:

```
PDS_VERSION_ID = PDS3
RECORD_TYPE = UNDEFINED
^PDF_DOCUMENT = "MECA_RDR_SIS.PDF"
^HTML_DOCUMENT = "MECA_RDR_SIS.HTM"
OBJECT = PDF_DOCUMENT
DOCUMENT_NAME = "Phoenix Project Software Interface
 Specification(SIS) MECA Non-Imaging Reduced
 Data Record (RDR)"
DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"
INTERCHANGE_FORMAT = BINARY
DOCUMENT_FORMAT = "ADOBE PDF"
DESCRIPTION = "The MECA Non-Imaging RDR SIS
 describes the format and content of MECA
 Non-Imaging RDR data products. This file
 is intended to be viewed using a PDF reader
 such as Adobe Acrobat."
PUBLICATION_DATE = 2008-12-23
END_OBJECT = PDF_DOCUMENT
OBJECT = HTML_DOCUMENT
DOCUMENT_NAME = "Phoenix Project Software Interface
 Specification(SIS) MECA Non-Imaging
 Reduced Data Record (RDR)"
DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = "HTML"
DESCRIPTION = "The MECA Non-Imaging RDR SIS
 describes the format and content of MECA
 Non-Imaging RDR data products. This file
 is intended to be viewed using a web
 browser."
PUBLICATION_DATE = 2008-12-23
END_OBJECT = HTML_DOCUMENT
END
```

The secondary label describes the files that reside in the DOCUMENT/IMAGE_FILES directory. These files describe the GIF and JPG images that are referenced by the HTML version of the document:

| PDS_VERSION_ID | = PDS3 |
| :---: | :---: |
| RECORD_TYPE | = UNDEFINED |
| ^GIF1_DOCUMENT | = "IMAGE001.GIF" |
| ^GIF2_DOCUMENT | = "IMAGE002.GIF" |
| ^JPG3_DOCUMENT | = "IMAGE003.JPG" |
| ^GIF4_DOCUMENT | = "IMAGE004.GIF" |
| $\wedge$ GIF5_DOCUMENT | = "IMAGE005.GIF" |
| ^GIF6_DOCUMENT | = "IMAGE006.GIF" |
| ^GIF7_DOCUMENT | = "IMAGE007.GIF" |
| ^GIF8_DOCUMENT | = "IMAGE008.GIF" |
| ^GIF9_DOCUMENT | = "IMAGE009.GIF" |
| ^GIF10_DOCUMENT | = "IMAGE010.GIF" |
| $\wedge$ GIF11_DOCUMENT | = "IMAGE011.GIF" |
| ^GIF12_DOCUMENT | = "IMAGE012.GIF" |
| $\wedge$ GIF13_DOCUMENT | = "IMAGE013.GIF" |
| ^GIF14_DOCUMENT | = "IMAGE014.GIF" |
| ^GIF15_DOCUMENT | = "IMAGE015.GIF" |
| $\wedge$ JPG16_DOCUMENT | = "IMAGE016.JPG" |
| ^GIF17_DOCUMENT | = "IMAGE017.GIF" |
| $\wedge$ GIF18_DOCUMENT | = "IMAGE018.GIF" |
| ^GIF19_DOCUMENT | = "IMAGE019.GIF" |
| ^GIF20_DOCUMENT | = "IMAGE020.GIF" |
| ^GIF21_DOCUMENT | = "IMAGE021.GIF" |
| $\wedge$ GIF22_DOCUMENT | = "IMAGE022.GIF" |
| OBJECT | = GIF1_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE001.GIF" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | = GIF |
| DESCRIPTION | = "Image 1 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = GIF1_DOCUMENT |
| OBJECT | = GIF2_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE002.GIF" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | $=$ GIF |
| DESCRIPTION | = "Image 2 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = GIF2_DOCUMENT |
| OBJECT | = JPG3_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE003.JPG" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | $=$ JPG |
| DESCRIPTION | = "Image 3 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = JPG3_DOCUMENT |
| OBJECT | = GIF4_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE004.GIF" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | = GIF |
| DESCRIPTION | = "Image 4 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | $=2008-12-23$ |
| END_OBJECT | = GIF4_DOCUMENT |
| OBJECT | = GIF5_DOCUMENT |

```
 DOCUMENT_NAME = "IMAGE005.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 5 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF5_DOCUMENT
OBJECT = GIF6_DOCUMENT
 DOCUMENT_NAME = "IMAGE006.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 6 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF6_DOCUMENT
OBJECT = GIF7_DOCUMENT
 DOCUMENT_NAME = "IMAGE007.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 7 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF7_DOCUMENT
OBJECT = GIF8_DOCUMENT
 DOCUMENT_NAME = "IMAGE008.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 8 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF8_DOCUMENT
OBJECT = GIF9_DOCUMENT
 DOCUMENT_NAME = "IMAGE009.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 9 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF9_DOCUMENT
OBJECT = GIF10_DOCUMENT
 DOCUMENT_NAME = "IMAGE010.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 10 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF10_DOCUMENT
OBJECT = GIF11_DOCUMENT
 DOCUMENT_NAME = "IMAGE011.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 11 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF11_DOCUMENT
OBJECT = GIF12_DOCUMENT
```

```
 DOCUMENT_NAME = "IMAGE012.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 12 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF12_DOCUMENT
OBJECT = GIF13_DOCUMENT
 DOCUMENT_NAME = "IMAGE013.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 13 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF13_DOCUMENT
OBJECT = GIF14_DOCUMENT
 DOCUMENT_NAME = "IMAGE014.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 14 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF14_DOCUMENT
OBJECT = GIF15_DOCUMENT
 DOCUMENT_NAME = "IMAGE015.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 15 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF15_DOCUMENT
OBJECT = JPG16_DOCUMENT
 DOCUMENT_NAME = "IMAGE016.JPG"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = JPG
 DESCRIPTION = "Image 16 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = JPG16_DOCUMENT
OBJECT = GIF17_DOCUMENT
 DOCUMENT_NAME = "IMAGE017.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 17 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF17_DOCUMENT
OBJECT = GIF18_DOCUMENT
 DOCUMENT_NAME = "IMAGE018.GIF"
 DOCUMENT_TOPIC_TYPE = "N/A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
 DESCRIPTION = "Image 18 in MECA_RDR_SIS.HTM"
 PUBLICATION_DATE = 2008-12-23
END_OBJECT = GIF18_DOCUMENT
OBJECT = GIF19_DOCUMENT
```

| DOCUMENT_NAME | = "IMAGE019.GIF" |
| :---: | :---: |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | = GIF |
| DESCRIPTION | = "Image 19 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = GIF19_DOCUMENT |
| OBJECT | = GIF20_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE020.GIF" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | = GIF |
| DESCRIPTION | = "Image 20 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = GIF20_DOCUMENT |
| OBJECT | = GIF21_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE021.GIF" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | = GIF |
| DESCRIPTION | = "Image 21 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = GIF21_DOCUMENT |
| OBJECT | = GIF22_DOCUMENT |
| DOCUMENT_NAME | = "IMAGE022.GIF" |
| DOCUMENT_TOPIC_TYPE | = "N/A" |
| INTERCHANGE_FORMAT | = BINARY |
| DOCUMENT_FORMAT | = GIF |
| DESCRIPTION | = "Image 22 in MECA_RDR_SIS.HTM" |
| PUBLICATION_DATE | = 2008-12-23 |
| END_OBJECT | = GIF22_DOCUMENT |
| END |  |

### 4.1.3.2 PDS4 DOCUMENT_SET Label Scheme

The same data product can also be described in PDS4 in a single label by use of the DOCUMENT_SET class:

```
 #PDS4#
 /* ******* Label Template : Document_Set ******* */
 OBJECT = DOCUMENT_SET;
 OBJECT = IDENTIFICATION_SECTION;
 URN = "HTTP://PDS-GEOSCIENCES.WUSTL.EDU/GEO/PHX-M-
MECA-4-NIRDR-V1/PHXMEC_1XXX/DOCUMENT/:1.0";
 IDENTIFIER = "PDS4_MECA_DOCUMENT_SET_ODL.LBL";
 TITLE = "Phoenix Project Software Interface
 Specification (SIS) MECA Non-Imaging Reduced
 Data Record (RDR)";
 VERSION
 = "1.0";
 DD_VERSION_ID = "DD_VERSION_ID";
 PDS_VERSION_ID = "PDS4.0";
```

```
 LABEL_REVISION_NOTE = "20081223:1.0 - initial version";
 PRODUCT_CREATION_TIME = 2008-12-23T00:36:08.000;
END_OBJECT = IDENTIFICATION_SECTION;
OBJECT = TAGGED_DOCUMENT_FORMAT;
 DESCRIPTION = "The PDF version of the MECA Non-Imaging RDR
 SIS";
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "MECA_RDR_SIS-PDF_FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "MECA_RDR_SIS.PDF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
 OBJECT = DOCUMENT_FORMAT;
 DESCRIPTION = "N/A";
 FORMAT_TYPE = "PS-ADOBE-2.0";
 END_OBJECT = DOCUMENT_FORMAT;
END_OBJECT = TAGGED_DOCUMENT_FORMAT;
OBJECT = TAGGED_DOCUMENT_FORMAT;
 DESCRIPTION = "The HTML version of the MECA Non-Imaging RDR
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "MECA_RDR_SIS-HTML_FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "MECA_RDR_SIS.HTM";
 FILE_TYPE = CHARACTER;
 END_OBJECT = TAGGED_FILE;
 OBJECT = DOCUMENT_FORMAT;
 DESCRIPTION = "N/A";
 FORMAT_TYPE = "HTML Version 3.2";
 END_OBJEC̄T = DOCUMENT_FORMAT;
END_OBJECT = TAGGED_DOCUMENT_FORMAT;
OBJECT = TAGGED_DOCUMENT_FORMAT;
 DESCRIPTION = "The HTML version of the MECA Non-Imaging RDR
 SIS describes the format and content of MECA
 Non-Imaging RDR data products. This file is
 intended to be viewed using a web browser.";
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "MECA_RDR_SIS-HTML_FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "MECA_RDR_SIS.HTM";
 FILE_TYPE = CHARACTER;
 END_OBJECT = TAGGED_FILE;
 OBJECT = DOCUMENT_FORMAT;
 DESCRIPTION _-FORMAT,
 DESCRIPTION = "N/A";
 FORMAT_TYPE = "HTML Version 3.2";
 END_OBJECT = DOCUMENT_FORMAT;
END_OBJECT = TAGGED_DOCUMENT_FORMAT;
```

```
OBJECT = TAGGED_DOCUMENT_FORMAT;
 DESCRIPTION = "The underlying GIF images associated with the
 HTML version of the MECA Non-Imaging RDR SIS";
 OBJECT = TAGGED_FILE;
 LOCAL IDENTIFIER
= "MECA_RDR_SIS-IMAGE001-FILE";
 CHECKSUM
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
= 111;
 FILE_NAME = "IMAGE001.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 = "MECA_RDR_SIS-IMAGE002-FILE";
 CHECKSUM
 = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE002.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE004-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
= 111;
 FILE_NAME = "IMAGE004.GIF";
 FILE_TYPE
= BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 = "MECA_RDR_SIS-IMAGE005-FILE";
 CHECKSUM
 = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
 FILE_NAME = "IMAGE005.GIF";
= 111;
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 OCAL IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE006-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
= 111;
 FILE NAME
= "IMAGE006.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 = "MECA_RDR_SIS-IMAGE007-FILE";
 CHECKSUM
 FILE_SIZE
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
= 111;
 FILE_NAME = "IMAGE007.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE008-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
= 111;
 FILE_NAME = "IMAGE008.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE009-FILE";
 FILE_SIZE
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
= 111;
 FILE_NAME
 = "IMAGE009.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE010-FILE";
```

```
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE010.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
 CHECKSUM
 FILE_NAME
 FILE_TYPE
= "MECA_RDR_SIS-IMAGE011-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
= 111;
 = "IMAGE011.GIF";
END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
LOCAL_IDENTIFIER
 CHECKSUM
 FILE_SIZE
 FILE_NAME
 FILE_TYPE = BINARY;
= BINARY;
= "MECA_RDR_SIS-IMAGE012-FILE";
 = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL IDENTIFIER
 CHECKSUM
 FILE_SIZE
 FILE_NAME
 FILE_TYPE
 = "MECA_RDR_SIS-IMAGE013-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
= "IMAGE013.GIF";
END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
 FILE_SIZE
 FILE_NAME
 FILE_TYPE = BINARY;
 = "MECA_RDR_SIS-IMAGE014-FILE";
 = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 = 111;
END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
 = "MECA_RDR_SIS-IMAGE015-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
= 111;
 FILE_NAME
= "IMAGE015.GIF";
 FILE_TYPE
= BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 = "MECA_RDR_SIS-IMAGE017-FILE";
 CHECKSUM
 FILE_SIZE
 = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
= 111;
 FILE_NAME = "IMAGE017.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
 = "MECA_RDR_SIS-IMAGE018-FILE";
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE
= 111;
 FILE NAME = 111;
 FILE_NAME = "IMAGE018.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE019-FILE";
 FILE_SIZE
= "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 = = 111;
 FILE_NAME
= "IMAGE019.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECTT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM
= "MECA_RDR_SIS-IMAGE020-FILE";
```

```
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE020.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE021.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "MECA_RDR_SIS-IMAGE022-FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE022.GIF";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
 OBJECT = DOCUMENT_FORMAT;
 DESCRIPTION = "ENCODING_TYPE = GIF89A";
 FORMAT_TYPE = "International Standard GIF89a";
 END_OBJECTT = DOCUMENT_FORMAT;
END_OBJECT = TAGGED_DOCUMENT_FORMAT;
OBJECT = TAGGED_DOCUMENT_FORMAT;
 DESCRIPTION = "The underlying JPG images associated with the
 HTML version of the MECA Non-Imaging RDR SIS";
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "MECA_RDR_SIS-IMAGE003-FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE003.JPG";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
 OBJECT = TAGGED_FILE;
 LOCAL_IDENTIFIER = "MECA_RDR_SIS-IMAGE016-FILE";
 CHECKSUM = "0ff0a5dd0f3ea4e104b0eae98c87f36c";
 FILE_SIZE = 111;
 FILE_NAME = "IMAGE016.JPG";
 FILE_TYPE = BINARY;
 END_OBJECT = TAGGED_FILE;
 OBJECT = DOCUMENT_FORMAT;
 = "ENCODING TYPE = JPEG"
 FORMAT_TYPE = "International Standard ISO 10918-1"
 END_OBJECT = DOCUMENT_FORMAT;
END_OBJECT = TAGGED_DOCUMENT_FORMAT;
OBJECT = DOCUMENT_SET_DESC;
 ACKNOWLEDGEMENT = "N/A";
 AUTHOR_LIST = "S.SLAVNEY";
 DESCRIPTION = "Phoenix Project Software Interface
 Specification (SIS) MECA Non-Imaging Reduced
 Data Record (RDR)";
 DOI = "TBD";
 PUBLICATION_DATE = 2008-12-23;
 RIGHTS = PUBLIC_DOMAIN;
 TITLE = "Phoenix Project Software Interface
```

```
 Specification (SIS) MECA Non-Imaging Reduced
 Data Record (RDR)";
 END_OBJECT = DOCUMENT_SET_DESC;
END_OBJECT = DOCUMENT_SET;
```

4.1.4 PDS4 DOCUMENT_SET and PDS3 DOCUMENT PARALLELISMS TBD

## APPENDIX A ACRONYMS

The following acronyms are pertain to this document:

| ADM | Architecture Development Method |
| :--- | :--- |
| API | Application Programming Interface |
| COTS | Commercial Off-The-Shelf |
| EN | Engineering Node (PDS) |
| ESDIS | Earth Science Data and Information System |
| FTP | File Transfer Protocol |
| IEEE | Institute of Electrical and Electronics Engineers |
| IPDA | International Planetary Data Alliance |
| IT | Information Technology |
| JPL | Jet Propulsion Laboratory |
| NASA | National Aeronautics and Space Administration |
| NSSDC | National Space Science Data Center |
| PDS | Planetary Data System |
| RM-ODP | Reference Model of Open Distributed Processing |
| RSS | Really Simple Syndication |
| SDSC | San Diego Supercomputing Center |
| SOA | Service-Oriented Architecture |
| TB | Terabyte |
| TOGAF | The Open Group Architecture Framework |
| XML | eXtensible Markup Language |

## APPENDIX B DEFINITION OF TERMS

The following are definitions of essential terms used throughout this document:

An "attribute" is a property or characteristic that allows both identification and distinction.

A "class" is the set of attributes which identifies a family. A class is generic -- a template from which individual members of each family may be constructed.

An "object" is a specific instance of a class.
"Cardinality" is the number of values allowed to an attribute or association in a single class. Cardinality in general is stated as a range with a minimum and maximum. For example, an attribute that may be multi-valued will have a cardinality of "1..*". A cardinality where the minimum and maximum are the same is often shown as the single value. For example, an attribute required to have exactly one value will have a cardinality of " 1 ". When a value is required the minimum cardinality is at least 1 . At least one value is always required in PDS4.
"Entity" is a generic term used to refer to specific attributes or associations listed in a class definition.

