Registry Service v.0.7.0

for the Planetary Data System

NASA Jet Propulsion Laboratory, 29 August 2011
California Institute of Technology

TABLE OF CONTENTS i

Table of Contents

Registry Service Guide

OVBIVIBW . . ottt e e e 1
Release NOES 2
Installation 4
OPEIALION . . o .ot 10
Appendix - Scheme and Node Registration 21

©2010 NASA/JPL « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2010 NASA/JPL

ALL RIGHTS RESERVED

11

1.1 OVERVIEW 1

Overview

About Registry Service

The Registry Service provides functionality for tracking, auditing, locating, and maintaining artifacts within
the system. The service provides a REST-based interface for interacting with the service.

Please send comments, change requests and bug reports to the PDS Operator at pds_operator@jpl.nasa.gov.

©2010 NASA/JPL « ALL RIGHTS RESERVED

mailto:pds_operator@jpl.nasa.gov

1.2 RELEASE NOTES 2

Release Notes

Release Notes

The purpose of this section is to provide a description of a Registry Service release including any impact that
the new or modified capabilities will have on the Discipline Nodes or the PDS user community. If viewing
the web-based version of this document, a somewhat itemized list of changes for each release can be found
on the Release Changes page.

Release 0.7.0

This release of the Registry Service is a component of the integrated release 1.2.0 of the PDS 2010 System.
This release is intended as a prototype release in support of the assessment of the PDS4 standards and the
system components to date. The new or modified capabilities for this release are as follows:

* Added support for package registration allowing actions like approval and deletion to be applied to all
members of a package.

* Added support for replication from one registry instance to another.

* Enhanced query support for auditable events.

* Moved the end points up one level to remove the redundant /registry from the path.

The liens for this release are as follows:

* Query support has been improved but is still case sensitive.
* The Federation and Registry objects have not been addressed yet.

* Need to generate a log file that conforms to the Report Service format.

Release 0.6.0

This release of the Registry Service is a component of the integrated release 1.1.0 of the PDS 2010 System.
This release is intended as a prototype release in support of the assessment of the PDS4 standards and the
system components to date. The new or modified capabilities for this release are as follows:

* The core functionality was moved from this package to the registry-core package to better satisfy JAR
dependencies from other projects.

* Added additional support for Classifications in the registry.

* Added a configuration endpoint allowing the configuration file generated from the data model to be

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.2 RELEASE NOTES 3

processed in one action.
* Added support for a RegistryPackage object to support batch operations.
* Added additional support for Service registrations.
* Modifications to support better alignment with the ebXML registry specification.

The liens for this release are as follows:

* Query support has been improved but is still case sensitive.
* The Federation and Registry objects have not been addressed yet.

* Need to generate a log file that conforms to the Report Service format.

Release 0.5.0

This release of the Registry Service is a component of the integrated release 1.0.0 of the PDS 2010 System.
This release is intended as a prototype release in support of the assessment of the PDS4 standards. The new
or modified capabilities for this release are as follows:

* Added support for registering Service and Classification objects.

* Added support for deleting Products and Associations.

* Added an interface for retrieving Auditable Events.

* Updated the status message to include counts of registered objects.
The liens for this release are as follows:

* Exception handling at this stage of development is minimal. Many error conditions have not yet been

mapped to HTTP error codes.

* Query support is case sensitive and not fully implemented for each object type.

* Not all aspects of JSON support have been implemented.

* The Federation and Registry objects have not been addressed yet.

* Need to generate a log file that conforms to the Report Service format.

Release 0.4.0

This release of the Registry Service is a component of the integrated release 0.1.0 of the PDS 2010 System.
This release is intended as a prototype release in support of the demonstration at the Management Council
Face-to-Face meeting in August 2010. This initial release of the service provides the capability to register and
browse data products and their associations.

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.3

1.3 INSTALLATION 4

Installation

Installation

This section describes how to install the Registry Service software contained in the registry-service package. The
following topics can be found in this section:

* System Requirements

* Unpacking the Package

* Deploying the Application

* Configuring the Application

System Requirements

The Registry Service was developed using Java and Jersey and will run under a standard Java Application
Server. The tool was specifically developed under Sun Java version 1.6, so the tool will execute correctly
under 1.6 and future versions.

Since the tool was developed using Sun's Java, the target Java Application Server should support Sun's Java
Runtime Environment (JRE). The application was tested using Apache's Tomcat version 6.0.X, which is the
preferred Java Application Server for deployment. The software can be obtained from the Apache Tomcat
web site. Other Java Application Servers should be compatible.

Although it is generally a useful tool for interacting with the Registry Service, the cURL command-line
application is required by the /load_registry script for populating the service with the supported object types. See
the Configuration section for more information.

Unpacking the Package

Download the registry-service package from the PDS I'TP site. The binary distribution is available in identical
zip or tar/gzip packages. Unpack the selected binary distribution file with one of the following commands:

% unzip registry-service-0.7.0-bin.zip
or
% tar -xzvf registry-service-0.7.0-bin.tar.gz

©2010 NASA/JPL « ALL RIGHTS RESERVED

http://jersey.dev.java.net/
http://tomcat.apache.org/
http://curl.haxx.se/
ftp://pds.nasa.gov/pub/toplevel/2010/registry/

1.3 INSTALLATION 5

Note: Depending on the platform, the native version of #zr may produce an error when attempting to unpack
the distribution file because many of the file paths are greater than 100 characters. If available, the GNU
version of tar will resolve this problem. If that is not available or cannot be installed, the zipped package will

work just fine in a UNIX environment.

The commands above result in the creation of the registry-service-0.7.0 directory with the following directory

structure:

README.txt
A README file directing the user to the available documentation for the project.

LICENSE.txt

The copyright notice from the California Institute of Technology detailing the restrictions regarding the
use and distribution of this software. Although the license is strictly worded, the software has been
classified as Technology and Software Publicly Available (TSPA) and is available for anyone to download
and use.

registry-service-0.7.0.war

This is the Web ARchive (WAR) file containing the Registry Service software including all dependent JAR
files.

bin/
This directory contains the batch and shell scripts for registering the supported object types.

conf/

This directory contains the policy files identifying the supported object types.

doc/

This document directory contains a local web site with the Registry Service Guide, javadoc, unit test
results and other configuration management related information. Just point your favorite browser to the
index.html file in this directory.

examples/

This directory contains examples of artifact descriptions that can be registered with a service instance.

Deploying the Application

The Registry Service web application is packaged as a WAR file and is intended for installation under a
standard Java Application Server. Prior to installation the WAR file should be renamed from
registry-service-0.7.0.war to registry.war. A WAR file is normally copied directly to the webapps directory or installed

via the Manager interface. Once this step is complete, the application is ready for operation. Verify a
successful installation by executing the command from the Ping portion of the Operation section.

When deploying the application via the Tomcat Manager interface, users have occasionally encountered a

©2010 NASA/JPL « ALL RIGHTS RESERVED

http://www.caltech.edu/

1.3 INSTALLATION 6

situation where the application appears to hang or generates the following stack trace:

javax. servl et. Servl et Exception: java.lang. Qut O MenoryError: PernGen space
com sun. j ersey. spi. container. servl et. WebConponent . servi ce(WebConponent . j ava: 424)
com sun. j ersey. spi.container.servl et. Servl et Cont ai ner. servi ce(Servl et Cont ai ner.java: 497)
com sun. j ersey. spi.container.servl et. Servl et Cont ai ner. doFi | t er (Servl et Cont ai ner. j ava: 855)
com sun. j ersey. spi.container.servl et. Servl et Cont ai ner. doFi | t er (Servl et Cont ai ner. java: 828)
com sun. j ersey. spi.container.servl et. Servl et Cont ai ner. doFi |l ter (Servl et Cont ai ner.java: 789)
org. springframewor k. orm j pa. support. OpenEntityManager|nViewFil ter. doFilterlnternal
(OpenEnti tyManager | nVi ewFil ter.java: 113)
org. springframework. web. filter. OncePer RequestFilter. doFilter(OncePerRequestFilter.java: 76)

If either of the above situations occur, stop and restart the Tomcat server to clear the problem.

Database Configuration

By default, the Registry Service comes configured to utilize Derby as the backend database. The Derby
database home directory will default to the current working directory where the Apache Tomcat server was
launched. To permanently set the home directory of the database, add the following to the
CATAIINA_OPTS environment variable:

CATALI NA_OPTS="- Dder by. syst em honme=/ pat h/ t o/ r egi st rydb/ home"

The CATAILINA_OPTS environment variable is loaded from the Apache Tomcat startup scripts. The
Tomcat server will need to be restarted for this configuration to take effect.

The backend database can be changed from Derby to another database provider. As of the current release,
MySQL is the only other supported database provider. To modify the configuration, edit the
applicationContext.xml file located in the §STOMCAT _HOME/ webapps/ registry/ WEB-INF/ classes directory. The
following line:

<cont ext: property-pl acehol der | ocation="cl asspath: derby. properties"/>

shoul d be changed to:

<cont ext : property-pl acehol der | ocation="cl asspath: nysql.properties"/>

The default configuration assumes that you have MySQL installed with a database named registry and will use a
default user name and password as specified below. If you want to change the URL, database name, user

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.3 INSTALLATION 7

name, and/or password you will need to edit the mysqlproperties file located in the
STOMCAT_HOME/ webapps/ registry/ WEB-INF/ classes directory. The following lines pertain to the default
configuration:

j avax. persi stence. jdbc. url =j dbc: nysql : //1 ocal host: 3306/ regi stry
j avax. persi stence. jdbc. user=registry
j avax. persi stence. j dbc. passwor d=p@swOr d

Additionally, if you are using a version of MySQL older than 5.x you will need to change the dialect. To do
this simply add a "#" before the first hibernate.dialect entry and remove the "#" from the second entry.

Before:

For use with MySQL 5+

hi ber nat e. di al ect =or g. hi ber nat e. di al ect. MySQL51 nnoDBDi al ect

For use with ol der versions of MySQL. See hi bernate docunentation.
#hi ber nat e. di al ect =or g. hi ber nat e. di al ect . MySQLI nnoDBDi al ect

After:

For use with MySQL 5+

#hi ber nat e. di al ect =or g. hi bernat e. di al ect. MySQL51 nnoDBDi al ect

For use with older versions of MySQL. See hi bernate docunentati on.
hi ber nat e. di al ect =or g. hi ber nat e. di al ect. MySQLI nnoDBDi al ect

No matter which database provider is configured as the backend database, the schema that supports the
Registry Service is created by default when launching the service for the first time.

Home Configuration

By default, the registry home is configured as A#p:/ / localhost:8080/ registry. This should be modified to
represent the end point of the target installation. To modify the configuration, edit the applicationContexct.xml
file located in the $TOMCAT_HOME /webapps/ registry/ WEB-INF/ classes directory. Modify the following line

with the new end point:

<bean id="idGenerator"
cl ass="gov. nasa. pds. regi stry. nodel . nam ng. Def aul t 1 denti fi er Generat or"
p: home="http://1 ocal host: 8080/ registry"/>

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.3 INSTALLATION 8

In a distributed environment with multiple Registry Service instances, the registry home value identifies the
source of registered entries when replication is occurring among the instances.

Configuring the Application

Once the Registry Service is installed and running, the list of supported object types must be registered with
the service. The list of objects types corresponds with the types of products that a given instance of the
Registry Service will support. Execute the RegistryConfig script from the bin directory in order to register the
full set of object types:

% cd registry-service-0.7.0/bin
% ./ Regi stryConfig

The output from this command should show the registration of the Core object types and PDS object types.
Since the configuration files referenced in the configuration script are slightly larger they ate sent in chunks.
Each configuration will get associated with a Registry Package and can be found by following the location link
that comes in the header of the response. The output from the command should look something like the
following:

* About to connect() to |ocal host port 8080 (#0)

* Trying ::1... connected

* Connected to local host (::1) port 8080 (#0)

> POST /registry-service/ configure?nane=Cor e+Obj ect s&

descri pti on=Thi s+confi gur es+t he+cor e+set +of +r egi st ry+obj ects HITP/ 1.1
> User-Agent: curl/7.19.7 (universal-apple-darwinl0.0) |ibcurl/7.19.7 OpenSSL/0. 9. 8l
zlib/1.2.3

> Host: |ocal host: 8080

Accept: */*

Content -type: appl i cati on/ xm

Cont ent - Lengt h: 5295

Expect: 100-conti nue

HTTP/ 1.1 100 Conti nue

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

Location: http://1ocal host:8080/registry/ packages/\
ur n: uui d: bd6e4f 7b- df b0- 443c- b845- 3378077b1016

Content - Type: text/plain

< Transfer-Encodi ng: chunked

< Date: Mn, 21 Mar 2011 19:55:52 GVII

<

*

ANNNANV V V VYV

N

Connection #0 to host |ocal host |eft intact
* (Cl osing connection #0
urn: uui d: bdée4f 7b- df b0- 443c- b845- 3378077b1016

* About to connect() to |ocal host port 8080 (#0)
* Trying ::1... connected

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.3 INSTALLATION 9

* Connected to local host (::1) port 8080 (#0)

> POST /registry-service/ configure?name=PDS+0bj ect s&\

descri pti on=Thi s+confi gur es+PDS+obj ect +t ypes HTTP/ 1.1

> User-Agent: curl/7.19.7 (universal-appl e-darwi n10.0) libcurl/7.19.7 OpenSSL/O0. 9. 8l
zlib/1.2.3

> Host: |ocal host: 8080

Accept: */*

Cont ent -t ype: appl i cati on/ xm

Content - Lengt h: 18320

Expect: 100-conti nue

HTTP/ 1.1 100 Conti nue

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

Location: http://1ocal host:8080/registry/ packages/\
urn: uui d: a07ad134- 42ad- 4781- 9chd- 826bb9a8df ec
< Content-Type: text/plain

< Transfer-Encodi ng: chunked

< Date: Mn, 21 Mar 2011 19:55:53 GVII

<

* Connection #0 to host |ocal host left intact
* (Cl osing connection #0

urn: uui d: a07ad134- 42ad- 4781- 9chd- 826bb9a8df ec

AN NNNYV V V VYV

The RegistryConfig script defaults to a Registry Service end point of h#tp:/ / localhost:8080/ registry. If necessary,
modify the script so that it corresponds with the end point of the target installation. In addition, this script
should be executed prior to applying security to the service URLSs since it does not account for a secured
interface.

Verify successful configuration by executing the command from the Report portion of the Operation section.
The output from this command should look something like the following;:

<ns2:report xm ns:ns2="http://registry. pds. nasa. gov' registryVersion="0.7.0'
packages="'2'

cl assificationNodes='67" classificationSchenes='1" services='0" extrinsics=0'
associ ati ons=' 68’

server Started='2011-08-28T12: 45: 43. 514-07: 00" status=" K />

©2010 NASA/JPL « ALL RIGHTS RESERVED

14

1.4 OPERATION 10

Operation

Operation

This section describes how to operate the Registry Service software. The following topics can be found in this
section:

* Interface

* Publish Artifacts
* Query Artifacts

* Update Status

* Delete Artifacts

* Ping

* Report

¢ Controlled Access

Interface

The Registry Service provides a REST-based interface accessible via HTTP for interacting with the service.
Details on the REST-based interface can be found in the API section. If viewing this document in PDF form,
the API section is not available. The APl documentation is available from any deployed instance of the
Registry Setvice by accessing /registry/ does/ from the host application setvet. Because the REST-based
interface operates over HT'TP, there are several options for interacting with the Registry Service:

* Registry User Interface

The registry-ui component offers a Graphical User Interface (GUI) for interacting with the service.

¢ Web Browser

Any standard web browser (e.g., Firefox, Safari, Internet Explorer, etc.) will allow interaction with the
query and retrieval interfaces of the service.

* cURL

The cURL utility offers the most flexible means for interacting with the service. The utility comes
installed on most UNIX-based platforms and is available for download for the Windows platform. The
examples in the sections that follow utilize ¢cURL to interact with the service.

The Registry Service also allows messaging (acceptance of and return of content descriptions) in the form of

©2010 NASA/JPL « ALL RIGHTS RESERVED

http://curl.haxx.se/

1.4 OPERATION 11

XML or JavaScript Object Notation (JSON). More on this in the examples below. Each PDS Node will have
their own installation of the Registry Service with its own service endpoint. Because of this, the examples
below use ht1p:/ / localhost:8080 as the generic endpoint for the service.

Publish Artifacts

The Registry Service supports a wide range of artifacts for registration with the service. In ebXML terms,
artifacts are referred to as Registry Objects. The following subsections provide examples for each of the
supported Registry Object types.

Extrinsics

In PDS terms, an extrinsic can be a data product, document, element definition, mission description, schema,
etc. Within the ebXML terminology this maps to an Extrinsic Object which is simply a way for a particular
instantiation of a registry to extend its model. The following is an example of an extrinsic description in XML
form:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<extrinsicObject xmns="http://registry. pds. nasa. gov"
gui d="1234v1. 0"
l'id="1234"
name="Product 1234 v1"
obj ect Type="Pr oduct "
description="This is a new version test product 1234 v1" >
<sl ot name="first-nanme">
<val ue>John</ val ue>
</ sl ot >
<sl ot nanme="| ast - nanme" >
<val ue>Doe</ val ue>
</ sl ot >
<sl ot name="phone">
<val ue>(818) 123- 4567</ val ue>
<val ue>(818) 765- 4321</ val ue>
</ sl ot >
</ extrinsicObject>

The extrinsic desctiption above is contained in the new_product.xm! file, which can be found in the /examples
directory of the software distribution package. The following command registers this extrinsic with the
service:

% curl -X POST -H "Content-type:application/xm" -v -d @ew_product.xm \
http://1ocal host: 8080/ regi stry/extrinsics

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 12

A successful registration with the above command would produce the following output to standard out:

* About to connect() to |ocal host port 8080 (#0)

* Trying ::1... Connection refused

* Trying fe80::1... Connection refused

* Trying 127.0.0.1... connected

Connected to | ocal host (127.0.0.1) port 8080 (#0)
POST registry/extrinsics HITP/ 1.1

User-Agent: curl/7.16.3 (powerpc-appl e-darw n9. 0)
Host: | ocal host: 8080

Accept: */*

Cont ent -t ype: appl i cati on/ xm

Cont ent - Lengt h: 598

*

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

Location: http://|ocal host: 8080/ registry/extrinsics/1234v1.0
Cont ent - Type: application/xm

Content-Length: 0O

Date: Wed, 14 Apr 2010 20:33:32 GVI

*N ANNANANANANV VYV VVVYV

Connection #0 to host |ocal host |eft intact
* C osing connection #0
urn: uui d: 53451c5e- 1809- 4799- 8dd8- 060672f 3e0el

By inspecting the HTTP Response Location Header one can see the URL to the registered extrinsic. This
header is a standard way for exchanging information about a newly created resource using HTTP. The last
line of the response is the global unique identifier that the service assigned to the registered extrinsic. The
following example details how to publish a new version of the above extrinsic to the service:

% curl -X POST -H "Content-type:application/xm" -v -d @ew_product_v2.xm \
http:/ /1 ocal host: 8080/ registry/extrinsics/|ogical s/1234

The value of 7234 in the example above represents the logical identifier of the original published extrinsic,
which must be specified in order for the service to recognize it as a new version. The following is an example
of a extrinsic description in JSON form:

{"description":"This is a new version test product 5678 v1",
"nane": " Product 5678 v1",
"obj ect Type": " Product",

"lid":"5678",

"slot":[{"name": "Il ast-nane", "val ue":["Doe"]},
{"name": "phone", "val ue": ["(818) 123- 4567", " (818) 765- 4321"] },
{"name":"first-nanme", "value":["Jane"]}]}

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 13

The extrinsic description above is contained in the json_product.zxt file. The following command registers this
extrinsic with the service:

% curl -X POST -H "Content-type: application/json" -v -d @son_product.txt \
http://1 ocal host: 8080/ regi stry/extrinsics

Associations

In PDS terms, an association is a relationship between two registered artifacts. The following is an example of
an association description in XML form:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<associ ation xm ns="http://registry. pds. nasa. gov"

sour ceChj ect =" 1234v1. 0"

tar get Cbj ect =" 1234v2. 0"

associ ati onType="associ at edTo"/ >

The association description above is contained in the new_association.xm! file. The following command registers

this association with the service:

% curl -X POST -H "Content-type:application/xm" -v -d @ew_association.xm \
http://1 ocal host: 8080/ regi stry/ associ ati ons

Services

In PDS terms, a setvice is an electronic resource available within the system. A service can be as simple as a
web site or as intricate as the Registry Service that is described in this documentation. The following is an
example of a service description in XML form:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<service xmns="http://registry. pds. nasa. gov"
name="PDS Servi ce"
description="This is a service to test adding a service description to the registry">
<servi ceBi ndi ng
nane="PDS Main Site"
description="This is the PDS main web site"
accessURI ="http://pds.jpl.nasa. gov">
<speci ficationLi nk

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 14

nanme="HTTP Speci fication Link"
description="This is a link to the HITTP specification."
speci ficati onCbj ect ="urn: uui d: HTTPSpeci fi cati onDocunent " >
<usageDescri pti on>
Use a browser to access the PDS site. The acceptabl e browsers are
listed in the usage paraneters.
</ usageDescri pti on>
<usagePar anet er >Fi r ef ox</ usagePar anet er >
<usagePar anet er >Saf ar i </ usagePar anet er >
<usagePar anet er >l nt ernet Expl or er </ usagePar anet er >
<usagePar anet er >Chr one</ usagePar anet er >
</ speci fi cati onLi nk>
</ servi ceBi ndi ng>
</ servi ce>

The service description above is contained in the new_service.xm! file. The following command registers this
service with the service:

% curl -X POST -H "Content-type:application/xm" -v -d @ew service.xm \
http://1ocal host: 8080/ regi stry/services

Schemes and Nodes

In order for the above artifacts to be accepted for registration by the service, the service must be preloaded
with the list of supported object types. This procedure is detailed in the Configuration portion of the
Installation section. For more information on scheme and node registration see the Scheme and Node
Registration section of the documentation. If viewing this document in PDF form, see the appendix for
details.

Query Artifacts

Although the Registry Service does not offer an advanced query interface, it does offer interfaces for
discovering and retrieving artifact descriptions. The URLs shown in the examples below will work in a web
browser.

Extrinsics

The following command retrieves a paged list of registered extrinsics (products) from the service:

% curl -X GET -H "Accept:application/xm" -v \
http://1ocal host: 8080/ regi stry/extrinsics

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 15

The interface above accepts a number of parameters for filtering the return results. See the API section for a
detailed list of the parameters. The following command retrieves the latest extrinsic with logical identifier
1234 from the service:

% curl -X GET -H "Accept:application/xm" -v \
http://1 ocal host: 8080/ regi stry/extrinsics/logical s/1234

In order to retrieve the eatliest extrinsic with logical identifier 7234, append /earliest to the URL in the
example above. In order to retrieve the latest extrinsic with logical identifier 7234, append //atest to the URL

in the example above. The following command retrieves the specific extrinsic with guid 7234, but in JSON
form:

% curl -X GET -H "Accept:application/json" -v \
http://1ocal host: 8080/ regi stry/extrinsics/1234v1.0

The example above will not work in a browser because it is not possible to set the HTTP Accept Header via a

browser, but the following command will work in a browser by encoding the return type with a suffix in the
URL:

% curl -X GET -v \
http:/ /1 ocal host: 8080/ registry/extrinsics/1234v1.0.json

Associations

The following command retrieves a paged list of registered associations from the service:

% curl -X GET -H "Accept:application/xm" -v \
http:/ /1 ocal host: 8080/ regi stry/ associ ati ons

The interface above accepts a number of parameters for filtering the return results. See the API section for a
detailed list of the parameters. In order to retrieve a specific association, append the global unique identifier

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 16

(/<guid>) for that association to the URL in the example above.

Services

The following command retrieves a paged list of registered services from the service:

% curl -X GET -H "Accept:application/xm" -v \
http:/ /1 ocal host: 8080/ regi stry/services

The interface above accepts a number of parameters for filtering the return results. See the API section for a
detailed list of the parameters. In order to retrieve a specific service, append the global unique identifier
(/<guid>) for that setvice to the URL in the example above.

Schemes and Nodes

The following command retrieves a paged list of registered schemes from the service:

% curl -X GET -H "Accept:application/xm" -v \
http://1ocal host: 8080/ regi stry/ schenmes

The interface above accepts a number of parameters for filtering the return results. See the API section for a
detailed list of the parameters. In order to retrieve a specific scheme, append the global unique identifier
(/<guid>) for that scheme to the URL in the example above.

The following command retrieves the list of nodes associated with a specific scheme:

% curl -X GET -H "Accept:application/xm" -v \
http://1 ocal host: 8080/ regi stry/ schemes/ <gui d>/ nodes

In otder to retrieve a specific node, append the global unique identifier (/<guid>) for that node to the URL
in the example above.

Events

The service tracks auditable events for each registered artifact including submission, approval, deprecation,
etc. The following command retrieves a paged list of events from the service:

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 17

% curl -X GET -H "Accept:application/xm" -v \
http://1ocal host: 8080/ regi stry/ events

The interface above accepts a number of parameters for filtering the return results. See the API section for a
detailed list of the parameters. In order to retrieve events for a specific object, append the global unique
identifier (/<guid>) for the affected object to the URL in the example above.

Packages

When Harvest Tool registers a bundle or collection or products with the service, it precedes the registration
with the registration of a package that all of the registered products will be associated with. The following
command retrieves a paged list of packages from the service:

% curl -X GET -H "Accept:application/xm" -v \
http://1ocal host: 8080/ regi stry/ packages

The interface above accepts a number of parameters for filtering the return results. See the API section for a
detailed list of the parameters. In order to retrieve a specific package, append the global unique identifier
(/<guid>) for that package to the URL in the example above.

Update Status

When extrinsics are successfully registered with the service they are given a status of Submitted. The status for
a specific extrinsic can be modified with the following command:

% curl -X POST -H "Content-type:application/xm" -v \
http://1 ocal host: 8080/ regi stry/extrinsics/<guid>/<action>

Valid values for <action> include approve, deprecate and undeprecate. The following diagram details the
relationship of the status state with the above actions.

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 18

— = Submitted

Approve

Undeprecate Approved

Deprecate

l

Deprecated

[

As mentioned above, Harvest Tool associates all registrations with a package. The status for the entire
package, including its members, can be modified with the following command:

% curl -X POST -H "Content-type:application/xm" -v \
http://1ocal host: 8080/ r egi st ry/ packages/ <gui d>/ menber s/ <acti on>

Delete Artifacts

The following command deletes the specific extrinsic from the service:

% curl -X DELETE -v \
http:/ /1 ocal host: 8080/ registry/extrinsics/<guid>

The same format applies to the other registry objects as well (e.g., associations, services, etc.). As mentioned
above, Harvest Tool associates all registrations with a package. An entire package, including its members, can

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION 19

be deleted with the following command:

% curl -X DELETE -v \
http://1ocal host: 8080/ r egi stry/ packages/ <gui d>/ menber s

The above command does not delete the package itself. The package can be deleted using the following:

% curl -X DELETE -v \
http://1ocal host: 8080/ regi stry/ packages/ <gui d>

Ping

The following command checks to see if the registry service is up and running:

% curl -X GET -H "Content-type: application/xm" -v \
http://1 ocal host: 8080/ registry

The above command will return a welcome message and an HTTP status of 200.

Report

The following command details the status of the service along with registered counts by Registry Object type:

% curl -X GET -H "Content-type:application/xm" -v \
http://1ocal host: 8080/ regi stry/report

Controlled Access

A given instance of the Registry Service may be configured to control access to specific URLs utilizing the
software of the Security Service. If this is the case, the #/ application can be used to obtain an authentication
cookie as follows:

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.4 OPERATION

% curl -X POST -H "Content-type:application/xm" -v -d @ew_product.xm \
https://1 ocal host: 8443/ registry/extrinsics -u usernane: password \
-k -c tontat_cookie.txt

The cookie file fomeat_cookie.txt can then be passed to the next e#r/ command:

% curl -X DELETE -H "Content-type:application/xm" -v -d @ew _product_v2.xm \
https://1 ocal host: 8443/ registry/extrinsics/1234v1.0 -k -b tontat_cookie.txt

The example above also applies to a DELETE request.

©2010 NASA/JPL « ALL RIGHTS RESERVED

20

15

1.5 APPENDIX - SCHEME AND NODE REGISTRATION 21

Appendix - Scheme and Node Registration

Scheme and Node Registration

This section describes classification scheme and classification node registration in more detail. At this point in
time, only one classification scheme is supported by the Registry Service and that is the ObjectType scheme.
This scheme is utilized by the service for determining the allowable object types (artifacts) for registration.
These object types are represented by the classification nodes, which are children of the ObjectType
classification scheme.

The standard scheme and associated nodes are registered during the installation of the service. That
procedure is detailed in the Configuration portion of the Installation section. The rest of this section gives a
little insight into the content of the scheme and node descriptions and how they are registered with the
service. The following is an example of a scheme description in XML form:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<cl assificationScheme xm ns="http://registry. pds. nasa. gov"
gui d="urn:registry: classificati onScheme: Obj ect TypeSchene: Test"
name="Test Cbj ect Type"
description="This is the canonical object type classification
that is one of the core registry objects”
i slnternal ="true"
nodeType="Uni queCode"/ >

The scheme description above is contained in the new_scheme.xm! file, which can be found in the /exanples
directory of the software distribution package. The following command registers this scheme with the service:

% curl -X POST -H "Content-type:application/xm" -v -d @ew schene. xm \
http://1ocal host: 8080/ regi stry-servi ce/ schenes

The following is an example of a node description in XML form:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>

<cl assi ficati onNode xm ns="http://registry. pds. nasa. gov"
gui d="urn: nasa: pds: profil e: regrep: Cbj ect Type: Product Test "
|'i d="urn: nasa: pds: profile:regrep: Cbj ect Type: Product Test "

©2010 NASA/JPL « ALL RIGHTS RESERVED

1.5 APPENDIX - SCHEME AND NODE REGISTRATION

name="Product Test Node"

description="This is the classification node for testing."
parent="urn:registry:classificati onSchene: Obj ect TypeSchene: Test"
code="Product Test"/ >

The node description above is contained in the new_node_product.>m! file. The following command registers

this node with the service:

% curl -X POST -H "Content-type: application/xm" -v -d @ew_node_product.xm \
http:/ /1 ocal host: 8080/ regi stry-service/\
schenmes/ urn: registry: classificati onSchene: Obj ect TypeSchene: Test/ nodes

©2010 NASA/JPL « ALL RIGHTS RESERVED

22

