

Data Ingestion and Registration

PDS Technical Session Pasadena, California September 21-23, 2016

Sean Hardman

- Overview
- Lifecycle
- Harvest Tool and its Configuration
- Registry Service and it Configuration
- Ingestion Process
- Service Status/Usage

Overview

- Ingestion involves harvesting and registration of PDS products.
- The Harvest and Registry components facilitate ingestion of these products.
 - Although they support PDS3 products, this presentation focuses on PDS4 products.
- The following product lifecycle diagram details where the components fit into the process.

Product Lifecycle

- Crawler-based tool for capturing and registering product metadata.
- Allows for periodic or on-demand registration of products.
- Configurable to support registration of products residing in PDS3 and PDS4 archives.
- Designed to integrate well with existing Node operations.
- Provides the first line of metadata harvesting within the system in order to facilitate tracking of and access to products.

Identification Area

- The logical identifier and version identifier
 become the unique identifier for the product.
- Title becomes the display name.
- Product class is used to classify the object type.

<Identification_Area> <logical_identifier> urn:nasa:pds:example.dph.sample_ar chive_bundle:data:tablechar.vg2-jpls-5-summ-ele-mom-96.0sec-v1.0

</logical_identifier> <version_id>1.0</version_id>

<title>

Voyager Electron density and moment temperature Plasma Experiment

</title>

<product_class>
Product_Observational
</product_class>

</Identification_Area>

Context and Observation Areas

 These areas contain most of the queryable metadata. <0bservation_Area>
 <Time_Coordinates/>
 <Primary_Result_Summary>
 <purpose>Science
 </purpose>
 <processing_level>Raw
 </processing_level>
 ...
</Primary_Result_Summary>
 <Investigation Area/>

- <Observing_System/> <Observing_System_Component/>
- <Target_Identification/>
- </Observation_Area>

Reference List Area

- An internal reference entry becomes a "reference" slot in the registry.
- Relates two registered objects with a reference type.
- These are used later when the search index is generated.

<Reference_List> <Internal_Reference> <lid_reference> urn:nasa:pds:context:node:node.ppi -ucla </lid_reference> <reference_type> data_curated_by_node </reference_type> </Internal Reference>

</Reference_List>

Reference Types

- Member
 - Represents the logical/physical tree of the archive.
- Context
 - Informational to facilitate search.
 - Realized at bundle, collection and/or data product level.
- Direct
 - Represents ancillary information.

Mission and Discipline Areas

- These areas can be harvested on demand and are likely Node/Bundle specific.
- Depends on the search requirements for the local deployment.
- Harvest can be configured to extract specific elements from the product label and place them into slots in the registry.

Long before there were Query Models and Property Maps, we used a spreadsheet to track the mapping of fields from the label to the Registry Service and then to the Search Service.

- These mappings are expressed in the Harvest Tool and Search Core configuration files.
- Future development will capture these in the Information Model so that default configurations can be somewhat automated.

Harvest Configuration

- The tool comes preconfigured for harvesting the following product types:
 - Product_Attribute_Definition, Product_Bundle, Product_Class_Definition, Product_Collection, Product_Context, Product_DIP, Product_DIP_Deep_Archive, Product_SIP, Product_SIP_Deep_Archive, Product_*_PDS3

The preconfigured types can be overwritten.

 The configurations for the other products types (Product _Observational, etc.) can be found in the example configuration files.

Harvest Configuration Example

<policy>

<registryPackage>

<name>Harvest Package Example Bundle Run</name>

<description>This is a Harvest run of the example bundle.</description>

</registryPackage>

<collections>

<file>\$HOME/dph_example_archive_VG2PLS/browse/Collection_browse.xml</file> <file>\$HOME/dph_example_archive_VG2PLS/context/Collection_context.xml</file> <file>\$HOME/dph_example_archive_VG2PLS/data/Collection_data.xml</file> <file>\$HOME/dph_example_archive_VG2PLS/document/Collection_document.xml</file> <file>\$HOME/dph_example_archive_VG2PLS/xml_schema/Collection_xml_schema.xml</file> </collections>

<directories>

<path>\$HOME/dph_example_archive_VG2PLS</path>

<fileFilter>

<include>*.xml</include>

</fileFilter>

</directories>

•••

</policy>

September 21-23, 2016

Registry Service

- Provides functionality for tracking, auditing, locating, and maintaining artifacts within the system.
- Provides a common implementation for registry service instances based on the CCSDS Registry and Repository Reference Model.
- Provides a REST-based external interface via HTTP.
- Provides a metadata store interface for supporting different databases.

Registry Configuration

- The information model identifies the PDS product types.
- It also identifies the common metadata elements for each of the product types.
- This information can be exported in a form to facilitate Registry Service configuration.
- Allows the information model to exert some semblance of control of the contents of the registries.

Ingestion Process

Harvest Tool to Registry Service

- 1. Harvest registers a package with the registry.
- 2. Harvest crawls the target directory and registers each product encountered.
 - Metadata is extracted from the product label.
 - Checksums are verified if supplied.
 - The product is registered as its specified type.
 - Product_File_Repository products are registered for each associated file.
 - Associations are registered to associate each of the above products with the package.
- 3. Harvest exits with a report.

Ingestion Process

Post Harvest

- In order to make the package and its associated products visible to Search Core, it must be approved.
- This can be accomplished via the Registry UI or the REST-based interface (e.g., curl).

Registered Content

- Now that we have products ingested in the registry, we are ready to populate the search index.
- The Registry Service query interface is more tailored to metadata extraction than it is to user queries.
- Early on we were querying the registry directly in some of our interfaces. All interfaces now query the Search Service.

Service Status

- The Registry Service instances deployed for PDS.
 - <u>http://pds.nasa.gov/services/registry-pds3/</u>
 - <u>http://pds.nasa.gov/services/registry-pds4/</u>
- The Registry Service instance deployed for IPDA.
 - <u>http://planetarydata.org/registry/</u>

Service Usage

- The Registry Service can be queried for the purpose of metadata harvesting.
 - PDS3 instance contains the PDS3 catalog objects (data sets, missions, instruments, etc.).
 - PDS4 instance contains the PDS4 catalog objects (investigations, instruments, etc.) along with bundle and collection products.
 - IPDA instance contains tools/services and PSA data sets.

Questions/Comments