

Planetary Data System

Registry Service 

Software Requirements and Design Document 
(SRD/SDD) 

Sean Hardman
Paul Ramirez

March 6, 2010
Version 0.3

Jet Propulsion Laboratory
Pasadena, California

Registry Service SRD/SDD

 ii

CHANGE LOG

Revision Date Description Author
0.1 2009-12-09 Initial draft. S. Hardman,

P. Ramirez
0.2 2010-01-25 Updated the use cases and

requirements and filled out
architecture section.

S. Hardman

0.3 2010-03-06 Incorporated comments from the
System Design Working Group and
added information on the REST-
based interface and prototype
analysis.

S. Hardman

Registry Service SRD/SDD

 iii

TABLE OF CONTENTS

1.0  INTRODUCTION.. 4 
1.1  Document Scope and Purpose .. 4 
1.2  Method 4 
1.3  Notation 4 
1.4  Controlling Documents... 5 
1.5  Applicable Documents ... 5 
1.6  Document Maintenance ... 5 

2.0  SERVICE DESCRIPTION .. 6 
3.0  USE CASES... 9 

3.1  Manage Policy.. 10 
3.2  Publish Artifact ... 10 
3.3  Update Artifact ... 11 
3.4  Approve Artifact.. 12 
3.5  Deprecate Artifact .. 12 
3.6  Delete Artifact... 12 
3.7  Query Artifact ... 13 
3.8  Retrieve Artifact.. 13 

4.0  REQUIREMENTS .. 14 
4.1  Level 4 Requirements .. 14 
4.2  Level 5 Requirements .. 15 

5.0  DESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS............ 17 
6.0  ARCHITECTURAL DESIGN.. 18 

6.1  Service Architecture ... 18 
6.2  External Interface Design... 20 
6.3  Internal Interface Design .. 21 
6.4  Data Model... 21 

7.0  ANALYSIS ... 23 
8.0  IMPLEMENTATION ... 25 
9.0  DETAILED DESIGN... 26 
APPENDIX A  ACRONYMS ... 27 
APPENDIX B  REST-BASED INTERFACE ... 28 

Registry Service SRD/SDD

 4

1.0 INTRODUCTION

The PDS 2010 effort will overhaul the PDS data architecture (e.g., data model,
data structures, data dictionary, etc) and deploy a software system (online data
services, distributed data catalog, etc) that fully embraces the PDS federation as
an integrated system while leveraging modern information technology.

This service provides functionality for tracking, auditing, locating, and maintaining
artifacts within the system. These artifacts can range from products consisting of
data files and label files, schemas, dictionary definitions for objects and
elements, etc.

1.1 Document Scope and Purpose

This document addresses the use cases, requirements and software design of
the Registry service within the PDS 2010 data system. This document is
intended for the reviewer of the service as well as the developer and tester of the
service.

1.2 Method

This combined Software Requirements and Software Design Document
(SRD/SDD) represents the software by defining use cases and requirements and
by using architecture diagrams, functional descriptions, context diagrams and
data flow diagrams for the high-level design. UML diagrams will illustrate the
detailed design.

1.3 Notation

The numbering of the requirements in this document will be formatted as
LX.REG.AA.X, where:

• LX represents the requirements level where X is a number.
• REG is an abbreviation representing the registry requirements section for

the specified level.
• AA is a two-letter abbreviation representing the requirement sub-category

(optional).
• X is a unique number within the section and optional sub-category for the

requirement.

Following the text of a requirement may be a reference to the requirement or use
case from which it was derived. The reference will be in parenthesis. A
paragraph following a requirement, which is indented and has a reduced font
size, represents a comment providing additional insight for the requirement that it

Registry Service SRD/SDD

 5

follows. This comment is not part of the requirement for development or testing
purposes.

1.4 Controlling Documents

[1] Planetary Data System (PDS) Level 1, 2 and 3 Requirements, August

2006.

[2] Planetary Data System (PDS) 2010 Project Plan, February 2010.

[3] Planetary Data System (PDS) 2010 System Architecture Specification,

Version 1.0, February 28, 2010.

[4] Planetary Data System (PDS) 2010 Operations Concept, February 2010.

[5] Planetary Data System (PDS) Service Software Requirements Document

(SRD), TBD.

1.5 Applicable Documents

[6] CCSDS Registry and Repository Reference Model, June 25, 2009.

[7] PDS4 Information Model Specification, PDS4 Information Model

Specification Team, February 2010.

1.6 Document Maintenance

The component design will evolve over time and this document should reflect
that evolution. This document is limited to design content because the
specification content will be captured in separate documentation (e.g., Installation
Guide, Operation Guide, etc.). This document is under configuration control.

Registry Service SRD/SDD

 6

2.0 SERVICE DESCRIPTION

The Registry service provides the track and locate artifact function for the PDS
2010 system (referred to as the “system” from this point forward). In addition to
registration, this service will provide the means to store artifacts when a given
operational scenario calls for it. The intent of this service is to facilitate tracking,
auditing and maintenance of artifacts within PDS (e.g., products, dictionary
definitions, schemas, services, etc.). The following diagram details the context of
the Registry service, represented as the Inventory, Document and Service
services, within the system:

Figure 1: Registry Service Context

Within the system, the Registry service will have a limited set of external
interfaces and will mostly interact with other system components. The rationale
behind this is to reduce the complexity of the service as its functions are at the
core of the system. Other services will build upon the information maintained in
any given registry and will expose this registry-based information via external
interfaces. This separation of concerns will help the system evolve as any
external requirements can be leveraged on other services and thus reducing the
impact to this core component.

Registry Service SRD/SDD

 7

As depicted in the diagram above, the Registry service supports several
interfaces to other services in the system. In general, these services will interact
with the registry to inform the service about a new managed artifact or
lookup/update basic information about an existing registered artifact. The registry
will maintain three types of registrations:

Metadata Entry
This type of entry will simply capture metadata about something of interest
within the system. This type of entry in the existing PDS infrastructure is
akin to descriptions captured for missions, instruments, data sets, targets,
etc.

Digital Object Entry
This type of entry tracks back to a physical set of bits. In the current PDS
infrastructure, this would be items such as products consisting of a label
and data files. In the proposed system, this expands to include any item of
interest (e.g., documents, schemas, etc.). Depending on the class of
registered artifact, support for storage (i.e., repository) may be internal,
external, or both.

Relationship Entry
This type of entry will serve as a means to tie registered artifacts together.
Such support is necessary for example to correlate data set descriptions
to a set of products. These relationships may span registries and thus the
need for coordination amongst registries exists.

Although the current PDS system does not have an official registry service, there
are pieces within the existing architecture that act in the capacity of a registry.
One example of this is the current catalog, which maintains data set, mission,
instrument, and other descriptions. Yet, another example is the archive directory
structure itself, which organizes and associates data and label files for a
particular data set or volume. Moreover, nodes generally have a catalog of
products that participates in the existing infrastructure through product and/or
profile servers. A product registry would not seek to replace the nodes existing
catalog but act as the infrastructure component equivalent. The following is an
accounting of registries that would be available within the system:

Inventory (Product and Catalog)
As indicated above this will serve as a means to capture the products
within the PDS. Registration of products will occur by crawling local
storage at the nodes. Products will remain within their local storage and
only enough information to locate and audit the product will be gathered.
This information will include, but not be limited to: access points,
checksum, file name, and file size.

Registry Service SRD/SDD

 8

The Data Engineers at the Engineering Node perform ingestion of catalog
metadata into the catalog database. The PDS 2010 Inventory service will
provide similar functionality for the catalog and product level metadata.
This instance is a specialization of a registry that merely captures catalog-
level descriptions and relationships.

Dictionary
This registry captures and stores object, group and element definitions
that make up the data dictionary. Management of these definitions occurs
in the Information Model [7], which exports this information periodically to
this instance of the service.

Document
With the transition to XML, management of schemas, which govern XML
instance files (e.g. labels), becomes of utmost importance. Schemas must
be captured and readily available and this registry will provide this role.
Given that schema typically exist in the form of a file, this particular
registry requires a repository for storing the files.

Service
The service registry will capture descriptions about services provided by
the system. PDS participants can share their services via this registry to
help promote reuse. These descriptions could evolve over time from
simple documentation in the form of a web page or document to
something along the lines of a WSDL or WADL formatted description. The
service registry will not dictate interaction with a given service but rather
exist as a means to document and promote existing services.

The service defined in this document will provide the PDS 2010 system with a
single implementation of registry capabilities for use by the other services and
applications within the system. This service is tailor-able depending on the type
of registry and may include a repository if the operational scenario and/or
requirements call for it.

Registry Service SRD/SDD

 9

3.0 USE CASES

A use case represents a capability of the service and why the user (actor)
interacts with the system. It should be at a high enough level so as not to reveal
or imply the internal structure of the system. An actor is an object (e.g., person,
application, etc.) outside the scope of the service but interacts with the service.
This section captures the use cases for the Registry service based on the
description of the service from the previous section as well as use cases defined
in the CCSDS Registry and Repository Reference Model [6]. These use cases
will be used in the derivation of requirements for the service. The following
diagram details the use cases:

Figure 2: Registry Service Use Cases

The above diagram identifies the following actors (represented as stick figures):

Registry Service SRD/SDD

 10

Data Engineer
This actor represents a portion of the PDS Technical group that curates
the data before and after it enters the PDS system.

Harvest/Ingest Service
This actor represents the software within the system that will perform
automated registration of products.

Operator
This actor represents a portion of the PDS Technical group that is
responsible for configuring and monitoring the system.

Search Service
This actor represents the software within the system that will query for
registered artifacts.

The following sections detail the use cases identified in the above diagram.

3.1 Manage Policy

The Registry service is policy driven with regard to the types of artifacts that it
registers, the associated metadata it expects to receive for an artifact and the
allowed operations on a type of artifact. This use case pertains to the Operator
actor.

1. Operator authenticates for access to the Registry service interface
(include Security service Authenticate User use case).

2. Operator submits an update to the Registry service policy to add, modify
or delete a type of artifact via the Registry service interface.

3. Registry service accepts (verifies input against constraints) and commits
(updates the underlying data store) the operation.

3.2 Publish Artifact

Register artifacts within the system for the purpose of tracking, discovery and
retrieval. This use case pertains to the Ingest and Harvest services that will
perform automated registration of artifacts. It also pertains to the Data Engineer
who will perform ad hoc registrations of artifacts within the system.

1. Ingest/Harvest service authenticates for access to the Registry service
API (include Security service Authenticate User use case).

2. Ingest/Harvest service submits an artifact for registration via the Registry
service API.

3. Registry service validates the metadata submitted for the artifact.

Registry Service SRD/SDD

 11

4. Registry service assigns a version to the artifact based on the PDS
identifier.

5. Registry service records the metadata associated with the artifact in the
underlying data store.

6. Registry service stores the artifact in the underlying repository.

Alternative: Ad Hoc Registration
At step 1, the Data Engineer initiates the artifact registration.

a. Data Engineer authenticates for access to the Registry service interface
(include Security service Authenticate User use case).

b. Data Engineer submits an artifact for registration via the Registry service
interface.

c. Return to primary scenario at step 3.

Alternative: Reference Registration
At step 6, the artifact is simply referenced and not stored in the repository.

a. Registry service stores a reference to the artifact in its home repository.

3.3 Update Artifact

Replace registered artifacts or their associated metadata. This use case pertains
to the Data Engineer who will perform replacement registrations of artifacts within
the system.

1. Data Engineer authenticates for access to the Registry service interface
(include Security service Authenticate User use case).

2. Data Engineer submits a replacement artifact for registration via the
Registry service interface.

3. Registry service validates the metadata submitted for the artifact.
4. Registry service records the metadata associated with the artifact in the

underlying data store.
5. Registry service stores the artifact in the underlying repository.
6. Registry service deletes the original artifact from the underlying repository.

Alternative: Reference Registration
At step 5, the artifact is simply referenced and not stored in the repository.

a. Registry service stores a reference to the artifact in its home repository.
b. Registry service deletes the original reference to the artifact from the

underlying repository.

Alternative: Metadata Update
At step 2, only the metadata is updated.

a. Data Engineer submits replacement metadata for a registered artifact.
b. Registry service validates the submitted metadata.
c. Registry service records the metadata associated with the artifact in the

underlying data store.

Registry Service SRD/SDD

 12

3.4 Approve Artifact

Approve registered artifacts in order to make them visible to the public. This use
case pertains to the Data Engineer who will approve registered artifacts.

1. Data Engineer authenticates for access to the Registry service interface
(include Security service Authenticate User use case).

2. Data Engineer marks a registered artifact as approved via the Registry
service interface.

3. Registry service records the approval in the underlying data store.

3.5 Deprecate Artifact

Deprecate registered artifacts when no longer pertinent. This could be due to the
availability of a newer version of the artifact. This use case pertains to the Data
Engineer who will deprecate registered artifacts.

1. Data Engineer authenticates for access to the Registry service interface
(include Security service Authenticate User use case).

2. Data Engineer marks a registered artifact as deprecated via the Registry
service interface.

3. Registry service records the deprecation in the underlying data store.

3.6 Delete Artifact

Delete registered artifacts from the registry. This will normally be utilized during
testing but could be utilized during operations if a registration was made my
mistake. Privilege for this capability should be limited. This use case pertains to
the Data Engineer actor who will delete registered artifacts.

1. Data Engineer authenticates for access to the Registry service interface
(include Security service Authenticate User use case).

2. Data Engineer marks a registered artifact as deleted via the Registry
service interface.

3. Registry service deletes the metadata associated with the artifact in the
underlying data store.

4. Registry service deletes the artifact from the underlying repository.

Alternative: Operation Not Allowed
At step 3, the Registry service does not allow the operation per policy.

a. Registry service checks policy for allowed operations.
b. Registry service does not allow deletion of the artifact per policy.

Alternative: Reference Registration

Registry Service SRD/SDD

 13

At step 4, the artifact is simply referenced and not stored in the repository.
a. Registry service deletes the reference to the artifact from the underlying

repository.

3.7 Query Artifact

Discover registered artifacts from the registry by submitting queries against the
registered metadata attributes. This use case pertains to the Data Engineer and
Search service actors.

1. Search service submits a query for artifact(s) via the Registry service API.
2. Registry service accepts the query and returns metadata for one or more

artifacts from the underlying data store matching the criteria.

3.8 Retrieve Artifact

Retrieve registered artifacts from the registry. The Registry service is not
intended to be the public interface for retrieval of artifacts from PDS. This use
case pertains to the Data Engineer.

1. Data Engineer submits a request to retrieve a registered artifact identified
by its global identifier.

2. Registry service accepts the request and returns the registered artifact
from the underlying repository.

Alternative: Reference Registration
At step 2, the artifact is simply referenced and not stored in the repository.

a. Registry service accepts the request and returns the registered artifact
from its home repository.

Registry Service SRD/SDD

 14

4.0 REQUIREMENTS

The architecture definition phase of the PDS 2010 project resulted in the
decomposition of the system into several elements [3]. The Registry service
derives from the Catalog/Data Management element, which was derived from
requirements 2.2.2 and 2.6 of the PDS Level 1, 2, and 3 Requirements document
[1]. The following level 3 requirements are relevant to this service:

2.2.2 PDS will track the status of data deliveries from data providers
through the PDS to the deep archive
2.6.2 PDS will design and implement a catalog system for managing
information about the holdings of the PDS
2.6.3 PDS will integrate the catalog with the system for tracking data
throughout the PDS
2.8.2 PDS will maintain a distributed catalog system which describes the
holdings of the archive
2.8.3 PDS will provide standard protocols for accessing data, metadata
and computing resources across the distributed archive

In addition to the Inventory service, the Dictionary, Document and Service
(Registry) services are instances of the Registry service.

4.1 Level 4 Requirements

The level four requirements in PDS represent subsystem, component or tool
requirements at a high level. The following requirements pertain to the Registry
service:

L4.REG.1 - The system shall maintain distributed registries of artifacts. (2.2.2,
2.6.2, 2.8.2)

Ideally, each PDS Node that maintains a repository of data will have a corresponding
registry.

L4.REG.2 - The system shall federate the registries. (2.8.2)

To federate is to form a single centralized unit from a number of entities, within which
each keeps some internal autonomy.

L4.REG.3 - The system shall register artifacts of a data delivery into an instance
of the registry. (2.2.2, 2.6.2)

A data delivery consists of products (artifacts) including but not limited to data, document
and software.

Registry Service SRD/SDD

 15

L4.REG.4 - The system shall provide application programming interfaces for
managing and accessing the content of the registries. (2.6.3, 2.8.3)

4.2 Level 5 Requirements

The level five requirements in PDS represent subsystem, component or tool
requirements at a detailed level. The following requirements pertain to the
Registry service:

L5.REG.1 - The service shall accept artifact registrations. (L4.REG.3, UC 3.2)

L5.REG.2 - The service shall provide a means for relating artifact registrations.
(L4.REG.2, L4.REG.3, UC 3.2)

This allows for the equivalent of batch registrations and enables further operations (e.g.,
approve, delete, etc.) on all artifacts within a batch.

L5.REG.3 - The service shall maintain policy regarding the classes of artifacts to
be registered. (L4.REG.1, UC 3.1)

The service will capture and store a common set of metadata elements for each
registered artifact. The policy will also include specification of metadata elements beyond
the common set for each class of artifact where necessary.

L5.REG.4 - The service shall accept metadata for a registered artifact in a
defined format. (L4.REG.3, UC 3.2)

The defined format of the metadata is likely an XML structure governed by an associated
XML Schema.

L5.REG.5 - The service shall validate metadata for a registered artifact.
(L4.REG.3, UC 3.2)

L5.REG.6 - The service shall assign a global unique identifier to a registered
artifact. (L4.REG.3, UC 3.2)

L5.REG.7 - The service shall assign a version to a registered artifact based on its
unique identifier. (L4.REG.3, UC 3.2)

L5.REG.8 - The service shall store metadata for a registered artifact in an
underlying data store. (L4.REG.3, UC 3.2)

L5.REG.9 - The service shall store the registered artifact in an underlying
repository where appropriate. (L4.REG.3, UC 3.2)

Some artifacts will be registered as a reference to the artifact in its home repository.

Registry Service SRD/SDD

 16

L5.REG.10 - The service shall allow replacement of registered artifacts. (UC 3.3)

L5.REG.11 - The service shall allow approval of registered artifacts. (UC 3.4)

Initial registrations result in an artifact being in an unapproved state. The meaning of
artifact approval requires definition for PDS.

L5.REG.12 - The service shall allow deprecation of registered artifacts. (UC 3.5)

Similar to the approved state, the meaning of artifact deprecation still requires definition
for PDS.

L5.REG.13 - The service shall allow deletion of registered artifacts. (UC 3.6)

For artifacts that were registered as references to an artifact in its home repository,
deletion will not delete the actual artifact from its home repository.

L5.REG.14 - The service shall allow queries for registered artifacts. (UC 3.7)

L5.REG.15 - The service shall allow retrieval of registered artifacts. (UC 3.8)

L5.REG.16 - The service shall provide an application programming interface.
(L4.REG.4, UC 3.1 – 3.8)

L5.REG.17 - The service shall restrict access to operations that alter the content
of the registry. (UC 3.1, UC 3.2, UC 3.3, UC 3.4, UC 3.5, UC 3.6)

L5.REG.18 - The service shall enable replication of registry contents with another
instance of the service. (TBD)

L5.REG.19 - The service shall enable verification of registry contents. (TBD)

Verification includes checking for registry artifact existence and verifying the checksum.

Registry Service SRD/SDD

 17

5.0 DESIGN PHILOSOPHY, ASSUMPTIONS, AND
CONSTRAINTS

The intent of the Registry service is to provide a generic and simple solution for
registering artifacts within the system. Although the service facilitates capabilities
for tracking and search, the Registry service does not ultimately satisfy those
requirements. Those requirements, are satisfied by the Monitor and Search
services, respectively.

The design of this service heavily leverages work current efforts by CCSDS in
the form of the Registry and Repository Reference Model [5]. Their reference
model in turn, heavily leverages the ebXML suite of standards managed by
OASIS.

Registry Service SRD/SDD

 18

6.0 ARCHITECTURAL DESIGN

The architectural design covers the component breakdown within the service,
external/internal interfaces and the associated data model.

6.1 Service Architecture

The following diagram details the architecture for the Registry service:

Figure 3: Registry Service Architecture

The service architecture provides for two scenarios for populating a registry:

Ad hoc Access via Portal
Although this is somewhat of a misnomer because the portal will use the
REST-based API to access the service, this is where the Data Engineers
can perform ad hoc registrations as well as the perform functions like
approve and deprecate which are probably not suitable for automated
access. Ad hoc access also includes performing functions like query and
retrieval for the purposes of managing the registry.

Automated Access via API
This scenario represents access from services like Harvest and Ingest,
where registrations are automated and achieved through service-to-
service communication via the REST-based API.

Registry Service SRD/SDD

 19

In addition to population of the registry, there are two scenarios for exporting
metadata from the registry:

Replication
There are two purposes for replication. The first is to populate an
aggregate registry utilized for satisfying tracking, metrics and catalog-level
search requirements. The second is for sharing registered artifacts
between Nodes.

Metadata Export for Search
This is where the Registry service facilitates end-user search. Instances of
the Search service will query one or more instances of the Registry
service in order to generate search indices. These indices are tailor-able
for the search application that will utilize them.

In addition to registry population and metadata export, the service will also
provide the capability to perform verification for registered artifacts. This
capability is intended to be executed local to the registry or more specifically,
local to the repository associated with the registry. A capability like this could
utilize a lot of bandwidth if executed remotely.

The following diagram details the “big picture” architecture of the Registry service
and depicts a possible deployment scenario for service instances:

Figure 4: Registry Service Architecture (Big Picture)

Registry Service SRD/SDD

 20

The diagram above depicts four instances of the Registry service within the
system and lends some insight to the deployment of the service. The instances
are as follows:

Local Node Registry
The plan is to have a local instance of the Registry service installed at
each Node that hosts a local repository. A local instance of the Harvest
service configured for the local repository populates this registry. A local
Search service extracts metadata from this registry to support Node-
specific search tools.

Remote Node Registry
Although this is not the preferred deployment, a centralized instance of the
Registry service is available that Nodes can populate remotely utilizing a
local instance of the Harvest service.

Centralized Registry
The plan is to have a centralized registry for managing schema and
service registrations. The Operators and Data Engineers use the Operator
Portal to populate this registry.

Aggregate Registry
The aggregate registry instance will contain replicated registry entries from
all other Registry service instances. This registry will allow the system to
satisfy requirements for catalog-level search, metrics generation and
subscription notification without the need to perform live queries across
the distributed registry instances. Replication to the aggregate registry and
index generation are performed during off-peak hours further increasing
productivity of the system.

6.2 External Interface Design

The Registry service offers a REST-based external interface. A REST-based
interface exhibits the following characteristics:

• A URL assigned to every resource
• Formulate URLs in a predictable manner
• Use HTTP methods for actions on a resource
• Leverage HTTP protocol headers and response codes where applicable

The goals for the interface are as follows:

• Keep the service simple and refrain from adding too much functionality
• Allow messaging in the form of XML or JSON
• Allow for extensible as new types of artifacts are defined

Registry Service SRD/SDD

 21

Any interface that modifies the contents of the registry will incorporate security.
This means that any interface specified below as an HTTP POST or PUT will first
require interaction with the Security service. The only change to these interfaces
will be in terms of a required HTTP header or cookie being set that will provide
the underlying registry with a means to verify the validity of the request. More
information on this topic will be forthcoming in a subsequent version of this
document.

See Appendix B for interface details.

6.3 Internal Interface Design

The internal interfaces for the Registry service involve communication with the
underlying data store and repository.

More information on this topic will be forthcoming in a subsequent version of this
document.

6.4 Data Model

The following diagram represents the CCSDS Registry model and is the basis for
implementing the underlying data store for this service:

Registry Service SRD/SDD

 22

Figure 5: Registry Service Data Model

The data model includes specific classes for the registry, federation and service.
All other registered items are extrinsic objects.

More information on this topic will be forthcoming in a subsequent version of this
document.

Registry Service SRD/SDD

 23

7.0 ANALYSIS

The early efforts for the Registry service looked into registry-based standards.
The two prevailing registry standards are:

UDDI (Universal Description Discovery & Integration)
UDDI is one of the standards from the WS-*(Web Services) stack of
standards (e.g., SOAP, WSDL, etc.). It promotes a service registry or
“yellow pages” of available services.

ebXML (Electronic Business using eXtensible Markup Language)
The ebXML standard is a modular suite of specifications enabling
business of the Internet. It promotes a registry as an information repository
and supports registration of different objects based on a Registry
Information Model (ebRIM) profile per object type.

Although they both facilitate a SOA, the ebXML standard better facilitates the
federated registry concept. Based on that decision, the development team
evaluated two available software packages:

freebXML
The freebXML package is open source and available as a free download.
The team successfully installed the package after a few failed attempts.
The package did support product registration but would require additional
development to meet the rest of the PDS requirements. In addition,
support for the package was not active and would require the PDS to
essentially continue to develop and maintain the package. Another
drawback was that the package conformed to an older version of the
standard.

WellGEO RegRep from Wellfleet Software Corporation
This is a Commercial Off-The-Shelf (COTS) package developed and
distributed by the main author of freebXML. The team worked with the
author to setup a prototype installation of the software that did perform to
expectations. The first caveat with the prototype was that it required quite
a bit of custom coding and apparent patches to the package to meet our
requirements. The impression from this was that the software was not very
mature. The second caveat was that the estimated cost of nearly a million
dollars for the first year with maintenance in the following years exceeded
PDS budget constraints.

After these two evaluations, the team decided to take a close look at the CCSDS
specification [6] and implement a conformant Registry service that supports the
PDS requirements.

Registry Service SRD/SDD

 24

Registry Service SRD/SDD

 25

8.0 IMPLEMENTATION

The PDS 2010 system is a phased implementation with increasing capabilities
delivered in three planned builds. The builds are as follows:

• Build 1 – This build consists of the Ingestion subsystem including the
Security, Harvest, Registry (Inventory, Dictionary, Document, Service) and
Report components along with the Data Provider tool suite.

• Build 2 – This build consists of the Distribution subsystem including the
Search and Monitor components along with a revised web site and
general portal applications.

• Build 3 – This build consists of enhanced user capabilities include the
Order and Subscription components along with integration of Discipline
Node applications and science services.

The Registry service is scheduled for delivery in Build 1. There is no planned
phasing with regard to the implementation with all planned capabilities available
in Build 1.

The implementation platform for the Registry service is the Java 2 Platform
Standard Edition 6.0. In addition, development will utilize publically available
libraries for interface development, message handling and file system access.

Figure 4 above details the scenarios for deployment. The preferred scenario for
Node deployment is to run an instance of the Registry service and an instance of
the Harvest tool on a single machine locally at the Node. Service packaging
consists of a Web Application Archive (WAR), which requires an Application
Server (e.g., Apache Tomcat) installed on the target machine to host the service.

Registry Service SRD/SDD

 26

9.0 DETAILED DESIGN

More information on this topic will be forthcoming in a subsequent version of this
document.

Registry Service SRD/SDD

 27

APPENDIX A ACRONYMS

The following acronyms pertain to this document:

API Application Programming Interface
CCSDS Consultative Committee for Space Data Systems
ebRIM ebXML Registry Information Model
ebXML Electronic Business using XML
HTTP Hypertext Transfer Protocol
JAX-RS The Java API for RESTful Web Services
JPL Jet Propulsion Laboratory
NASA National Aeronautics and Space Administration
OASIS Organization for the Advancement of Structured
 Information Standards
PDS Planetary Data System
REST Representational State Transfer
SDD Software Design Document
SRD Software Requirements Document
UC Use Case
UDDI Universal Description Discovery & Integration
WADL Web Application Description Language
WAR Web Application Archive
WSDL Web Service Definition Language
XML Extensible Markup Language

Registry Service SRD/SDD

 28

APPENDIX B REST-BASED INTERFACE

The generated documentation that follows came directly from the Registry
service source code using the Java API for RESTful Web Services (JAX-RS)
framework.

3/6/10 4:54 PMPDS Registry Service API

Page 1 of 7file:///Users/shardman/Desktop/application.html

PDS Registry Service API
This is the proposed REST interface for a PDS Registry.

Resources
http://pds.nasa.gov/services/registry

http://pds.nasa.gov/services/registry/synch
http://pds.nasa.gov/services/registry/status
http://pds.nasa.gov/services/registry/artifacts

http://pds.nasa.gov/services/registry/artifacts/{lid}/{version}
http://pds.nasa.gov/services/registry/artifacts/{lid}/{version}/approve
http://pds.nasa.gov/services/registry/artifacts/{lid}/{version}/deprecate

http://pds.nasa.gov/services/registry/associations
http://pds.nasa.gov/services/registry/associations/source/{lid}/{version}
http://pds.nasa.gov/services/registry/associations/source/{lid}/{version}/{relationship}
http://pds.nasa.gov/services/registry/associations/target/{lid}/{version}
http://pds.nasa.gov/services/registry/associations/target/{lid}/{version}/{relationship}
http://pds.nasa.gov/services/registry/associations/all/{lid}/{version}
http://pds.nasa.gov/services/registry/associations/all/{lid}/{version}/{relationship}

http://pds.nasa.gov/services/registry/storage
http://pds.nasa.gov/services/registry/storage/{container}

Representations
application/xml
application/json
Status Code 200 - application/xml (ns3:status_information)
application/xml
application/json
application/xml
application/json
/
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
/
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json
application/xml
application/json

Resources

/registry
This is the root resource for managing the registry.

Methods

/registry/synch
Methods

PUT

file:///Users/shardman/Desktop/application.html#resources
file:///Users/shardman/Desktop/application.html#id23814
file:///Users/shardman/Desktop/application.html#id23821
file:///Users/shardman/Desktop/application.html#id23830
file:///Users/shardman/Desktop/application.html#id23844
file:///Users/shardman/Desktop/application.html#id23905
file:///Users/shardman/Desktop/application.html#id23953
file:///Users/shardman/Desktop/application.html#id24067
file:///Users/shardman/Desktop/application.html#id24112
file:///Users/shardman/Desktop/application.html#id24158
file:///Users/shardman/Desktop/application.html#id24216
file:///Users/shardman/Desktop/application.html#id24296
file:///Users/shardman/Desktop/application.html#id24343
file:///Users/shardman/Desktop/application.html#id24387
file:///Users/shardman/Desktop/application.html#id24451
file:///Users/shardman/Desktop/application.html#id24496
file:///Users/shardman/Desktop/application.html#id24484
file:///Users/shardman/Desktop/application.html#representations
file:///Users/shardman/Desktop/application.html#id23859
file:///Users/shardman/Desktop/application.html#id23860
file:///Users/shardman/Desktop/application.html#id23881
file:///Users/shardman/Desktop/application.html#id23925
file:///Users/shardman/Desktop/application.html#id23926
file:///Users/shardman/Desktop/application.html#id23946
file:///Users/shardman/Desktop/application.html#id23949
file:///Users/shardman/Desktop/application.html#id23952
file:///Users/shardman/Desktop/application.html#id24002
file:///Users/shardman/Desktop/application.html#id24005
file:///Users/shardman/Desktop/application.html#id24014
file:///Users/shardman/Desktop/application.html#id24021
file:///Users/shardman/Desktop/application.html#id24025
file:///Users/shardman/Desktop/application.html#id24035
file:///Users/shardman/Desktop/application.html#id24079
file:///Users/shardman/Desktop/application.html#id24081
file:///Users/shardman/Desktop/application.html#id24129
file:///Users/shardman/Desktop/application.html#id24134
file:///Users/shardman/Desktop/application.html#id24150
file:///Users/shardman/Desktop/application.html#id24140
file:///Users/shardman/Desktop/application.html#id24169
file:///Users/shardman/Desktop/application.html#id24172
file:///Users/shardman/Desktop/application.html#id24176
file:///Users/shardman/Desktop/application.html#id24229
file:///Users/shardman/Desktop/application.html#id24234
file:///Users/shardman/Desktop/application.html#id24291
file:///Users/shardman/Desktop/application.html#id24289
file:///Users/shardman/Desktop/application.html#id24339
file:///Users/shardman/Desktop/application.html#id24337
file:///Users/shardman/Desktop/application.html#id24397
file:///Users/shardman/Desktop/application.html#id24404
file:///Users/shardman/Desktop/application.html#id24444
file:///Users/shardman/Desktop/application.html#id24447
file:///Users/shardman/Desktop/application.html#id24508
file:///Users/shardman/Desktop/application.html#id24504
file:///Users/shardman/Desktop/application.html#id24523
file:///Users/shardman/Desktop/application.html#id24528
file:///Users/shardman/Desktop/application.html#id24550
file:///Users/shardman/Desktop/application.html#id24540

3/6/10 4:54 PMPDS Registry Service API

Page 2 of 7file:///Users/shardman/Desktop/application.html

Synchronizes the incoming registry artifacts with those already present in
the registry.

acceptable request representations:

application/xml
application/json

/registry/status
Methods

GET

Retrieve the status of the registry service. This can be used to monitor the
health of the registry.

available response representations:

Status Code 200 - application/xml (ns3:status_information)

/registry/artifacts
This interface delegates all functions involving an artifact. This is defined as a
sub-resource to the registry resource merely to partition off the operations
involving artifacts.

Methods

GET

Allows access to all the artifacts managed by this repository. This will need
to be converted over to a paged list

available response representations:

application/xml
application/json

POST

Publishes an artifact to the registry. Publishing includes validation,
assigning a version, storage (if object contents are attached), and
notification. Validation from the perspective of publishing is on the metadata
provided with the entry.

acceptable request representations:

application/xml
application/json

available response representations:

/

/registry/artifacts/{lid}/{version}
resource-wide template parameters

parameter value description
lid string

version string

Methods

GET

Retrieves an artifact from the registry. The local identifier with the version
uniquely identifies one artifact.

available response representations:

application/xml
application/json

PUT

Updates the artifact in the registry with the lid and version to the given
artifact

file:///Users/shardman/Desktop/application.html#id23859
file:///Users/shardman/Desktop/application.html#id23860
file:///Users/shardman/Desktop/application.html#id23881
file:///Users/shardman/Desktop/application.html#id23925
file:///Users/shardman/Desktop/application.html#id23926
file:///Users/shardman/Desktop/application.html#id23946
file:///Users/shardman/Desktop/application.html#id23949
file:///Users/shardman/Desktop/application.html#id23952
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24002
file:///Users/shardman/Desktop/application.html#id24005

3/6/10 4:54 PMPDS Registry Service API

Page 3 of 7file:///Users/shardman/Desktop/application.html

acceptable request representations:

application/xml
application/json

available response representations:

application/xml
application/json

DELETE

/registry/artifacts/{lid}/{version}/approve
resource-wide template parameters

parameter value description
lid string local identifier which identifies a unique set of artifacts

version string of the artifact's local identifier

Methods

PUT

This will set the status of a registered artifact to approved.

available response representations:

application/xml
application/json

/registry/artifacts/{lid}/{version}/deprecate
resource-wide template parameters

parameter value description
lid string local identifier which identifies a unique set of artifacts

version string of the artifact's local identifier

Methods

PUT

This will set the status of a registered artifact to deprecated.

available response representations:

application/xml
application/json

/registry/associations
Methods

GET

Retrieves all associations managed by the registry. This needs to be
switched over to a paged response as it is likely to grow to a large set of
associations.

available response representations:

application/xml
application/json

POST

Creates a new association between artifacts in the registry. The association
has a source, destination, and is named.

acceptable request representations:

application/xml
application/json

available response representations:

/

file:///Users/shardman/Desktop/application.html#id24014
file:///Users/shardman/Desktop/application.html#id24021
file:///Users/shardman/Desktop/application.html#id24025
file:///Users/shardman/Desktop/application.html#id24035
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24079
file:///Users/shardman/Desktop/application.html#id24081
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24129
file:///Users/shardman/Desktop/application.html#id24134
file:///Users/shardman/Desktop/application.html#id24150
file:///Users/shardman/Desktop/application.html#id24140
file:///Users/shardman/Desktop/application.html#id24169
file:///Users/shardman/Desktop/application.html#id24172
file:///Users/shardman/Desktop/application.html#id24176

3/6/10 4:54 PMPDS Registry Service API

Page 4 of 7file:///Users/shardman/Desktop/application.html

/registry/associations/source/{lid}/{version}
resource-wide template parameters

parameter value description
lid string local identifier of the source artifact

version string of the given local identifier

Methods

GET

Retrieves all associations where the identified artifact is the source of the
relationship.

available response representations:

application/xml
application/json

/registry/associations/source/{lid}/{version}/{relationship}
resource-wide template parameters

parameter value description
lid string local identifier of the source artifact

relationship string that exists between the source and target

version string of the given local identifier

Methods

GET

Retrieves all named associations where the identified artifact is the source
of the relationship.

available response representations:

application/xml
application/json

/registry/associations/target/{lid}/{version}
resource-wide template parameters

parameter value description
lid string local identifier of the source artifact

version string of the given local identifier

Methods

GET

Retrieves all associations where the identified artifact is the target of the
relationship.

available response representations:

application/xml
application/json

/registry/associations/target/{lid}/{version}/{relationship}
resource-wide template parameters

parameter value description
lid string local identifier of the source artifact

relationship string that exists between the source and target

version string of the given local identifier

Methods

GET

Retrieves all named associations where the identified artifact is the target of
the relationship.

http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24229
file:///Users/shardman/Desktop/application.html#id24234
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24291
file:///Users/shardman/Desktop/application.html#id24289
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24339
file:///Users/shardman/Desktop/application.html#id24337
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string

3/6/10 4:54 PMPDS Registry Service API

Page 5 of 7file:///Users/shardman/Desktop/application.html

available response representations:

application/xml
application/json

/registry/associations/all/{lid}/{version}
resource-wide template parameters

parameter value description
lid string local identifier of the source artifact

version string of the given local identifier

Methods

GET

Retrieves all associations where the identified artifact is part of irregardless
if it is the source or target.

available response representations:

application/xml
application/json

/registry/associations/all/{lid}/{version}/{relationship}
resource-wide template parameters

parameter value description
lid string local identifier of the source artifact

relationship string that exists between the source and target

version string of the given local identifier

Methods

GET

Retrieves all named associations where the identified artifact is part of
irregardless if it is the source or target.

available response representations:

application/xml
application/json

/registry/storage
Methods

GET

Lists out all the containers managed by the store

available response representations:

application/xml
application/json

/registry/storage/{container}
resource-wide template parameters

parameter value description
container string

Methods

GET

available response representations:

application/xml
application/json

file:///Users/shardman/Desktop/application.html#id24397
file:///Users/shardman/Desktop/application.html#id24404
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24444
file:///Users/shardman/Desktop/application.html#id24447
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24508
file:///Users/shardman/Desktop/application.html#id24504
file:///Users/shardman/Desktop/application.html#id24523
file:///Users/shardman/Desktop/application.html#id24528
http://www.w3.org/TR/xmlschema-2/#string
file:///Users/shardman/Desktop/application.html#id24550
file:///Users/shardman/Desktop/application.html#id24540

3/6/10 4:54 PMPDS Registry Service API

Page 6 of 7file:///Users/shardman/Desktop/application.html

Representations

application/xml

application/json

Status Code 200 - application/xml
(ns3:status_information)
Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<status_information storedDataObjects="25" registeredArtifacts="10" serverStarted="2010-02-23T10:52:15.166-08:00" status="OK" xmlns="http://registry.pds.nasa.gov"/>

XML Schema

Source:

<xs:element name="status_information">
 <xs:complexType>
 <xs:sequence/>
 <xs:attribute name="status" type="registryStatus"/>
 <xs:attribute name="serverStarted" type="xs:dateTime"/>
 <xs:attribute name="registeredArtifacts" type="xs:int"/>
 <xs:attribute name="storedDataObjects" type="xs:int"/>
 </xs:complexType>
 </xs:element>

application/xml

application/json

application/xml

application/json

/

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

3/6/10 4:54 PMPDS Registry Service API

Page 7 of 7file:///Users/shardman/Desktop/application.html

application/xml

application/json

application/xml

application/json

/

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

application/xml

application/json

